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Abstract
Fetal brain segmentation and gestational age prediction have been under active research in the field of medical image pro-
cessing for a long time. However, both these tasks are challenging due to factors like difficulty in acquiring a proper fetal 
brain image owing to the fetal movement during the scan. With the recent advancements in deep learning, many models 
have been proposed for performing both the tasks, individually, with good accuracy. In this paper, we present Multi-Tasking 
Single Encoder U-Net, MTSE U-Net, a deep learning architecture for performing three tasks on fetal brain images. The first 
task is the segmentation of the fetal brain into its seven components: intracranial space and extra-axial cerebrospinal fluid 
spaces, gray matter, white matter, ventricles, cerebellum, deep gray matter, and brainstem, and spinal cord. The second task 
is the prediction of the type of the fetal brain (pathological or neurotypical). The third task is the prediction of the gestational 
age of the fetus from its brain. All of this will be performed by a single model. The fetal brain images can be obtained by 
segmenting it from the fetal magnetic resonance images using any of the previous works on fetal brain segmentation, thus 
showing our work as an extension of the already existing segmentation works. The Jaccard similarity and Dice score for 
the segmentation task by this model are 77 and 82%, respectively, accuracy for the type of prediction task is 89% and the 
mean absolute error for the gestational age task is 0.83 weeks. The salient region identification by the model is also tested 
and these results show that a single model can perform multiple, but related, tasks simultaneously with good accuracy, thus 
eliminating the need to use separate models for each task.

Keywords Medical image processing · Fetal brain segmentation · Fetal gestational age prediction · Deep learning · 
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1 Introduction

Computer science plays an essential role in many fields 
of study including medical science. The advancement of 
artificial intelligence and machine learning can assist doc-
tors in identifying anomalies in the future. Ultrasonogra-
phy (USG) is the primary method for fetal imaging and 
diagnosis of fetal abnormalities, but fetal magnetic reso-
nance imaging (MRI) has been proven to be advantageous 
over USG because of better image contrast of soft tissues, 
larger view, and 3D visualization (Levine 2001) and is 
also not affected by maternal obesity and severe oligohy-
dramnios (Roy et al. 2017a). MRI is non-invasive medical 
imaging that uses strong magnetic fields and radio waves 
rather than ionization radiation to produce detailed images 
of the organs. Iman A Hosny and Hamed S Elghawabi 
(Hosny and Elghawabi 2010) concluded that ultrasound 
being the primary choice for screening method, MRI 
can be used as a “complementary adjunctive modality” 
to ultrasonography and has been proved to be effective 
in determining many abnormalities in a growing fetus. 
Human brain development begins in the third gestational 
week and thereafter, under genetic influence, it shows 
rapid anatomical changes like the formation of charac-
teristic gyri and sulci, an increase in brain volume, and 
neurological developments like neurons producing chemi-
cal signals for communication (Konkel 2018; Chi et al. 
1977; Roy and Bandyopadhyay 2016). It is believed that 
the communication established among the neurons in the 
brain affects personality, behavior, cognition, and mem-
ory of an individual (Gale 2004) and any deviation from 
standard development patterns is a pathological condition 
like schizophrenia, autism, attention deficit hyperactivity 
disorder, congenital heart diseases (Murray et al. 1991; 
Scher 2003 Jun; Levman and Takahashi 2015; Jaimes et al. 
2020), etc.

Machine learning recognizes and classifies patterns and 
reveals intricate details in data. After its introduction in 
medical imaging, different machine learning models are 
trained to make predictions of diagnosis. Advancements 
in hardware configurations and machine learning led to the 
creation of deep learning. Deep learning, which is a subset 
of machine learning, tries to mimic the human brain. It 
is composed of many layers and multiple hidden layers; 
these layers are formed of nodes that work collectively 
to produce a result; this whole process resembles a neu-
ral network. Deep neural networks are capable of feature 
extraction, that is reducing the number of input features 
and selecting only those features that accurately and con-
cisely explain our desired results from unstructured data, 
without human interventions, subsequently by backtrack-
ing and gradient descent, thus increasing the accuracy of 

predictions. Large training data, domain-specific knowl-
edge, and developing algorithmic techniques for different 
scanning protocols can improve the result obtained from 
deep learning (Shen et al. 2017).

The downside of deep learning is its need for large data-
sets to produce high-accuracy results. Its dependency on 
large datasets is proportional to the complexity of the images 
and image set. On the other hand, conventional image pro-
cessing relies on manual extraction of features, albeit this 
method is labor intensive but is often more effective when 
it comes to small datasets. Lufan Liao et al. (Liao, et al. 
2020) addressed the problem using label distribution learn-
ing (LDL). Hagerty et al. (Hagerty et al. 2017) discussed that 
a fusion of deep learning with manual feature extraction can 
reduce the need for large datasets and produce better results. 
Rajchl et al. (Rajchl et al. 2016) employed a crowdsourc-
ing platform for weak annotation by non-experts and then 
applied it to a fully convolutional neural network and pointed 
out that the result obtained was not as accurate as annota-
tions by experts but fair enough. N. Khalili et al. (Khalili 
et al. 2019) proposed a segmentation method that uses CNN 
twice, once to extract intracranial volume, and next to seg-
ment the extracted volume into seven types of brain tissues.

Identifying early signs and providing early treatment can 
improve or cure a person’s health. Image segmentation can 
detect suspicious regions from medical images, and this may 
foretell many diseases like brain tumors and breast cancer 
(Joseph 2014; Roy et al. 2022; Roy and Shoghi 2019). Ultra-
sound is the major medical in-utero imaging technique used 
to examine a developing fetus, but it generates 2D images 
which in contrast to 3D MRI, does not allow visualization 
from all perspectives. So, any suspected diagnosis in USG 
is further examined by MRI. Fetal MRI faces some chal-
lenges, like the arbitrary orientation of the fetus, the small 
size of the fetus, and fetal motion, substantially during early 
gestation as these add noise to data (Roy et al. 2017b). 
Brain extraction and super-resolution reconstruction play 
an important role in the study of MRI images. A significant 
image segmentation process called U-Net was developed 
by Ronneberger et al. (Ronneberger et al. 2015). It was built 
upon a contracting path to capture context and a symmet-
ric expanding path that enables precise localization. Fur-
ther modifications of U-Net include 3D U-Net (Çiçek et al. 
2016) which extends the 2D U-Net segmentation into its 
equivalent 3D segmentation, U-Net +  + (Zhou et al. 2018), 
generated by appending a dense convolution block and hav-
ing dense skip connections on skip pathways, and also deep 
supervision for improvement of the model, etc. A variation 
by Rampun et al. (Rampun et al. 2019) in contrast to the 
original U-Net includes more convolutional blocks, a com-
bination of balanced cross-entropy, exponential linear unit, 
and ‘RMSprop’ for learning generalization, and a drop-out 
layer at the end of the last three blocks in the downsampling 
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part. U-Net has extensive use in the field of medical science 
and has been used for fetal brain extraction from MRI slices 
(Lou et al. 2019; Salehi et al. 2018), tumor segmentation (Do 
et al. 2021; Failed 2019).

Gestational age can also be derived from the fetal MRI 
scans. To calculate accurate gestational age from MRI 
images in the second half of gestation, Yuequan Shi et al. 
(Shi et al. 2020) established a second-order polynomial 
regression model to be the best descriptor of biometric meas-
ure while a linear model accurately predicted gestational age 
in the second and third trimesters. A work by Liyue Shen 
et al. (2022) proposed an attention-guided, multi-view deep 
learning network that analyzes MRI accurately to predict 
gestational age. The proposed regression algorithm provides 
an automated machine-enabled tool with the potential to bet-
ter characterize in-utero neurodevelopment and guide real-
time gestational age estimation after the first trimester.

In this paper, we developed Multi-Tasking Single Encoder 
U-Net (abbreviated as MTSE U-Net), a deep learning-based 
architecture, to solve three tasks. The first task is to segment 
the fetal brain into seven major components: intracranial 
space and extra-axial cerebrospinal fluid spaces (CSF), gray 
matter (GM), white matter (WM), ventricles (LV), cerebel-
lum (CBM), deep gray matter, especially thalamus and 
putamen (SGM), and brainstem and spinal cord (BS). The 
second task is to predict the type of the fetal brain (‘Patho-
logical’ or ‘Neurotypical’) and the third task is to predict the 
gestational age of the fetus from its brain image. Thus, this 
model can be interpreted as a ‘many-in-one’ model, which 
can perform multiple, but related, tasks (suggesting a model 
for three tasks is referred to as ‘the combined task’ through-
out the rest of the paper). We have compared the perfor-
mance of our model with some of the previously proposed 
works on these tasks. This model is a modified version of the 
U-Net architecture (Ronneberger et al. 2015). The motiva-
tion behind our work is:

1. U-Net is used as the base model because it can encode 
the necessary spatial and orientation data, which can 
later be decoded to return a precise segmentation. It can 
precisely localize borders and is found to be efficient in 
several medical imaging segmentation use cases.

2. Developing a model for the combined task is inspired by 
the fact that, since all the tasks require the same input 
(thus being somewhat related) and the model is required 
to learn to encode the essential features at the training 
step for all of them; thus, the encoder can be kept com-
mon, trying to use the same encoded information for all 
the three tasks.

3. Our work can be seen as an extension of the previous 
papers on segmentation of the fetal MRI to return the 
fetal brain image, after eliminating the neighboring 

components like the skull surrounding the brain and the 
womb of the mother.

Our work made the following contributions:

1. We have proposed the MTSE U-Net model for perform-
ing the combined task with a high accuracy.

2. As per our knowledge, this is the first time that someone 
has tried to perform multiple tasks with a single model 
in the field of medical image processing with fetal brain 
MRI.

3. We have proceeded a step further in making use of the 
segmented fetal brain as input and segmenting it into its 
seven major components, predicting the type of the brain 
and finally the gestational age of the fetus from its brain, 
all at the same time, by the same model.

4. We have compared the performance of our model with 
three state-of-the-art segmentation models: Deep U-Net 
(Rampun et al. 2019), FCN (Rajchl et al. 2016) and 
U-Net (Ronneberger et al. 2015).

2  Materials and methods

At first, we applied some pre-processing steps to the input 
for convenience and easier interpretation of data. It is fol-
lowed by developing and experimenting with several modi-
fied versions of the U-Net model for the combined task, 
comparing their outputs, and selecting the best model out of 
them, as discussed further in detail. We have used Google 
Colaboratory for this work.

2.1  Data pre‑processing

The data pre-processing and data cleaning steps necessary 
for our model are:

1. To increase training time and space efficiency and for 
easy accessibility, the 3D dataset (details about the 
dataset are available in the ‘data availability’ section) 
is divided into a set of 2D images along all three axes. 
An example, the input image, and its corresponding seg-
mentation are shown in Fig. 1a and b. The 3D dataset 
produces a total of (256*3*80 =) 61,440 images, but this 
immense number of images for training will demand a 
huge training time and might even lead to the overfit-
ting of the model. Thus, we have used around 14,000 
images (13,500 for training and validation, and 550 for 
testing) from all the MRIs. We chose images from all 
the fetus samples to be able to capture every variation in 
the fetal brain for an accurate prediction of all the three 
tasks. This is because the dataset has fetal MRI of both 
neurotypical and pathological types (which vary greatly 



 Network Modeling Analysis in Health Informatics and Bioinformatics (2022) 11:50

1 3

50 Page 4 of 14

among themselves in their structures depending on the 
condition the brain is suffering from), with the fetus ges-
tational age ranging from 20 to 35 weeks (which is the 
duration of fast paced brain development). As a result, 
our model is capable of working with any type of fetal 
brain.

2. These images are not chosen arbitrarily, rather, after 
removing the images/slices having no brain part in them 
(i.e., completely filled with zeroes), we have chosen a 
number of equally separated slices for each 3D sample 
and along each axis. The total number of slices (n) cho-
sen from all the samples combined can be represented 
by the following equation:

where, first summation is the aggregation all the sam-
ples, the second summation is the sum over all the three 
axes, m=256 (since all the samples, along all axes have 

n =

80�
j=1

3�
i=1
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m − zij

�
�
(m−zij)

k

�
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256 slices), zij represents the number of black slices 
along ith axis for the jth sample and k is a constant. The 
parameter k determines the number of 2D images in the 
dataset and is directly proportional to number of images 
(⌊ ⌋ represents the floor function).

3. We have introduced some rotational (as well as transla-
tional) independence in the model by arbitrarily rotating 
or flipping some images. This is illustrated in Fig. 1e–g.

4. We have also introduced slight normal, horizontal, and 
vertical Gaussian Blur in certain images (Fig. 1g–i) to 
reproduce the situation where the MRI may get blurred 
due to motion of the fetus at the time of scanning. This 
will help the model to learn some motion-correction 
properties during training. However, we have not applied 
this effect on the images which were derived from 
blurred 3D samples, i.e., they are blurred by default 
(Fig. 1c, for example).

5. Since we examined 2D slices, predicting the type and 
age from fetal brain is adequately possible only from 
the middle portion of the brain along any axis, which 
exhibits the overall development and the actual size of 
the brain and the brain parts, and thus precisely reflects 

Fig. 1  An example image along 
with its segmentation and all the 
pre-processing steps applied on 
it; except for c, which shows a 
different (and already blurred) 
image
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the age. As we move toward the edges, the brain (and 
its parts) start shrinking, consequently accurate brain 
age prediction is not possible. Thus, the type of predic-
tion task, a classification problem, returns three classes: 
'Neurotypical', 'Pathological' or 'Type cannot be deter-
mined from the slice’. The model returns “'Type cannot 
be determined from the slice” for the slices that do not 
belong to the intermediate portion of the brain. Same 
holds for the age prediction task as well, which is a 
regression problem. Lastly, the age values are normal-
ized before giving it to the model.

The pre-processing steps mentioned above were applied 
to both the input images and their corresponding segmented 
outputs, except for the blurring effect, which was applied to 
only the input images. Thus, the final dataset consists of all 
sorts of images: neurotypical and pathological fetal brain 
images, flipped images, blurred images, and brain images 
of different sizes (depending on the age of the fetus at the 
time of scanning).

Finally, the input to the models is the pre-processed 
images, and their corresponding outputs included: the seg-
mented images, the type of the fetal brain (including type 
cannot be predicted), and the gestational age of the fetus 
(including age cannot be predicted).

2.2  Network architecture

A U-Net architecture (Ronneberger et al. 2015) contains two 
main parts: the encoder, which learns to encode the essential 
data from the input image, and the decoder, which learns 
to decode the encoded data to return the required segmen-
tation. We have tested out several models, keeping U-Net 
as the base model, where all models have the following in 
common:

1. The first step is to encode the necessary information 
from the input for all tasks, for which, we have used a 
set of ‘Encoder blocks’ each of which have two convo-
lutional layers and a max-pool layer. These blocks are 
arranged in a layer-wise manner, with the size of the 
input reducing after each step. The output from the last 
encoder block then goes to the lowest layer, which con-
sists of two convolutional layers.

2. For the segmentation task, the output from the second 
convolutional layer at the lowest layer is sent to a set of 
‘Decoder blocks’, which consist of a deconvolutional 
layer (for decoding the inputs from the previous layer), 
a concatenation layer, and followed by two convolutional 
layers. These blocks are also arranged in a layer-wise 
manner, with the image size increasing after each step. 
The number of decoder blocks is the same as that of the 
encoder blocks. Also, an encoder block on each layer 

is connected to its corresponding decoder block in the 
same layer (the outputs of which are concatenated by the 
concatenation layer), either directly (as in the original 
U-Net) or via a convolutional layer.

3. For the type and age prediction task, the output from the 
first convolutional layer in the lowest layer is sent to a set 
of three dense layers which will encode the input further 
and is common for both the tasks. This output is then 
divided into two parts: one for type prediction, and other 
for age prediction; both tasks, thereby, having their own 
set of dense layers. The type prediction part will have 
two more dense layers and the age prediction part will 
have three dense layers, followed by their corresponding 
output layer (different combinations of dense layers have 
been tested out and the one mentioned here returned the 
best results).

4. The models take an input image of shape 256 × 256. The 
segmentation output of the shape 256 ×  256 ×  8, as an 
eight-class classification (the seven brain components 
and the black background pixel) is performed for each 
pixel. The class with the highest probability for each 
pixel is then chosen as output. For type prediction, the 
output is of the shape 1 × 3, for three classes, and the one 
with the highest probability is selected as the output. For 
age prediction, the output is a single, normalized value, 
which is used to get the original age. A threshold for the 
normalized value is set and if the value is higher, then 
the original age is returned, otherwise, ‘Age cannot be 
determined from the slice’ is returned.

5. For the segmentation and type prediction task, sparse 
categorical cross entropy was used as the loss func-
tion and accuracy was used as the metric to train our 
model, and for the age prediction task, mean squared 
error was used both as the loss function and the metric. 
Adam’s optimizer was chosen for training the models 
because they use fewer parameters than other optimiz-
ers (thus are faster), at the same time being efficient. 
Thirty epochs have been used to train the models, along 
with ‘Early Stopping’ and patience = 3 as the callback 
to prevent overfitting.

The lowest layer stores all the necessary encoded infor-
mation about the input (and acts as a bottleneck); thus, its 
output is the most suitable input for the dense layer for fur-
ther encoding, as compared to any other layer. The advan-
tage of a combined model is that this model is capable of 
using the same encoding units and the same encoded infor-
mation for all the tasks. They differ only in the second part: 
for the segmentation task where the encoded information is 
decoded using transposed convolution and for the other two 
tasks, it is passed on to dense layers for further encoding.

The models we have tried out, keeping the above specifi-
cations in common, are:
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1. The first two models have five and six layers of encoder–
decoder blocks, with the encoder and decoder blocks 
connected directly. The rest remain the same. The two 
models are named ‘5 layer no-mod multi-pred’ and ‘6 
layer no-mod multi-pred’, respectively.

2. The next three models have five, six, and seven layers of 
encoder–decoder blocks, with the two blocks connected 
by a convolutional layer in between. This layer is added 
to be able to store additional information for segmen-
tation; thus, the performance is expected to improve. 
These models are named ‘5-layer mod multi-pred’, 
‘6-layer mod multi-pred’, and ‘7-layer mod multi-pred’, 
respectively.

3. Next three models are also similar to the three models 
mentioned above. However, each one has two additional 
skip connections for the two prediction tasks. The skip 
connections will help eliminate the vanishing gradient 
problem, if any. These models are named ‘5-layer mod 
multi-pred skip’, ‘6-layer mod multi-pred skip’ (this is 
our selected model and is named ‘MTSE U-Net’, based 
on its characteristics), and ‘7-layer mod multi-pred skip’, 
respectively.

We have trained multiple models with similar configura-
tions as a part of our ablation study. This study will help us 
analyze the effect and importance of additional layers, skip 

connections, and the encoder–decoder blocks. The name of 
all the models used in this paper are highly descriptive of 
their architecture.

The architecture of the MTSE U-Net model is shown in 
Fig. 2, along with the components of encoder and decoder 
blocks. The values on each box represent the number of fil-
ters in case of encoder–decoder blocks, and convolutional 
layers, and the number of neurons in case of dense layers.

3  Results and discussion

After exploring the various models, they were tested out on 
the test set and on some individual images as well, to judge 
their performance results on various factors.

3.1  Evaluation metrics

The evaluation metrics used for the segmentation are: preci-
sion (P), sensitivity (S), Jaccard similarity (J), Dice score 
(D), and accuracy (A), as in Roy and Shoghi (2019); Ram-
pun et al. 2019). Precision gives us a count of the number of 
correct predictions with respect to the ground truth values 
for any particular class, whereas sensitivity gives us a count 
of the number of correct predictions, with respect to all the 
predictions for any particular class. Jaccard similarity and 

Fig. 2  Architecture of a MTSE U-Net, b encoder block, and c decoder block
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Dice score give us the extent of overlapping of the prediction 
with the ground truth segmentation for each class. Accuracy 
is the total number of correctly predicted labels (pixels) in 
an image, irrespective of the class, by the total number of 
pixels in the image. The first four metrics are individually 
calculated for each class in every image. However, for some 
testing processes, we have used the average of these metrics 
over all the classes for any image:

Evaluation metric used for the fetal brain type predic-
tion is accuracy (AT), which is the number of correct fetal 
brain type predictions from the brain images, with respect 
to the total number of images; and that for the gestational 
age prediction is mean absolute error (MAE), which is the 
difference between the actual and the predicted age for all 
the brain images, by the total number of images, and is cal-
culated in weeks. The target is to maximize the metric values 
for the segmentation and type prediction task, and to mini-
mize the MAE for the age prediction task.

3.2  Performance results

The test set of 550 images, consisting of all possible types 
of MRI slices, has been used to evaluate the performance 
of all the models, and compare them with the previously 
proposed works. Table 1 shows the detailed performance 
of each model, including the previous models (indicated in 
the row) on the whole test set for the segmentation of each 
of the seven brain part (indicated in the column), on the 
following metrics (and in the following order): precision, 
sensitivity, Jaccard similarity, and Dice score; all of which 
are represented in a single cell. It is expressed in the form: 
Mean ± SD, where ‘Mean’ and ‘SD’, respectively, represent 
the mean and the standard deviation of the performance of a 
model for the segmentation of a brain part. The model giving 
the highest value for each brain component and for each met-
ric is indicated in bold. The highest values for each metric 
among the models developed in this work are underlined.

(1)Average precision (AP) =

∑
All classesP

Total number of classes

(2)Average sensitivity (AS) =

∑
All classesS

Total number of classes

(3)

Average Jaccard similarity (AJ) =

∑
All classesJ

Total number of classes

(4)Average Dice score (AD) =

∑
All classesD

Total number of classes

Table 1 shows that the models (developed in our work) 
giving the best segmentation performances are: MTSE 
U-Net (i.e., 6-layer mod multi-pred skip), followed by 
5-layer mod multi-pred skip and 6-layer mod multi-pred; 
best results for most metrics are returned by the MTSE 
U-Net model. However, taking the previous works into con-
sideration, it is seen that the best performance is returned by 
the U-Net architecture, having slightly better performance 
than that of our model, whereas for the other two models 
(i.e., Deep U-Net and FCN), it is somewhat similar to ours.

After the detailed performance on segmentation, the 
same test set has been used to evaluate the average perfor-
mance of the models for all the three tasks (Table 2). The 
first five columns show the average evaluation metrics for 
the segmentation task, and the last two columns show the 
accuracy for type prediction task and MAE for the age pre-
diction task, respectively. The metrics are expressed in the 
following form (for the segmentation and age prediction task 
only): ‘Mean ± SD’, where ‘Mean’ and ‘SD’ are the mean 
and standard deviation of the performance of the model 
(mentioned in the row) evaluated on the metric (mentioned 
in the column) for all the images in the test set. The accuracy 
of the type prediction task is a single value, representing its 
performance over the entire test set. For each metric, the 
model giving the highest value is indicated in bold. Also, the 
highest values for each metric among the models developed 
in this work are underlined.

It can again be seen that the best performing model for 
the segmentation task is U-Net, having slightly better perfor-
mance than that of MTSE U-Net, and that of Deep U-Net and 
FCN is again very much similar to our MTSE U-Net model. 
The lowest value for the age prediction task is returned by 
the 5-layer mod multi-pred model (MAE = 0.82 weeks). 
However, when all the three tasks are considered, the over-
all best performing combined task model is MTSE U-Net, 
returning great results for all metrics. The segmentation per-
formance of the MTSE U-Net model exceeds that of other 
combined task models by approximately 2–3 percent. It also 
returned the best type prediction accuracy (which is also 
returned by the 5-layer mod multi-pred skip model). We 
have also plotted a visualization of the average segmentation 
results of MTSE U-Net on the test set in Fig. 3. The bar rep-
resents the mean of the specified metric and the vertical line 
represents the standard deviation with respect to the mean.

Table 2 shows that we did not compare our type and age 
prediction performance with the previously proposed meth-
ods. This is because, as per our knowledge, no previous work 
on fetal brain classification into neurotypical and pathologi-
cal type exists; thus, the performance comparison for this 
task is restricted to our models only. And the previous works 
on gestational age prediction from 2D brain images (Shi 
et al. 2020; Shen et al. 2022) did not consider the possibility 
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of a slice being away from the center of the brain. However, 
as a segmentation input can be from any portion of the brain, 
we had to train our model accordingly (by adding a new 
category for the non-central slices), and thus our processes 
are not directly comparable.

After identifying MTSE U-Net as the best model, we have 
also performed threefold cross-validation on this model to 
confirm that it is robust and is not biased by the training 

data. The results are shown in Table 3. The three iterations 
in this table indicate the three different combinations of train 
and test set for the threefold cross-validation.

As can be seen from the above table, the results across 
all the iterations are very similar, showing that our model is 
consistent in its results and robust in any situation. It gave 
good results on a test set of more than 4,700 samples. How-
ever, it is seen that these results are a bit lower that that seen 

Table 1  Evaluation of all the models on the four evaluation metrics (precision, sensitivity, Jaccard similarity, and Dice score) for only the seg-
mentation task of each individual brain part

The model giving the highest value for each brain component and for each metric is indicated in bold. The highest values for each metric among 
the models developed in this work are underlined

CSF GM WM LV CBM SGM BS

Deep U-Net 0.80 ± 0.26
0.72 ± 0.31
0.62 ± 0.31
0.71 ± 0.32

0.74 ± 0.22
0.71 ± 0.25
0.61 ± 0.28
0.71 ± 0.25

0.90 ± 0.15
0.89 ± 0.17
0.81 ± 0.20
0.88 ± 0.18

0.88 ± 0.25
0.85 ± 0.23
0.77 ± 0.30
0.83 ± 0.28

0.86 ± 0.31
0.94 ± 0.19
0.82 ± 0.34
0.84 ± 0.33

0.83 ± 0.30
0.93 ± 0.16
0.79 ± 0.32
0.83 ± 0.30

0.82 ± 0.34
0.87 ± 0.29
0.74 ± 0.39
0.77 ± 0.38

FCN 0.75 ± 0.29
0.75 ± 0.29
0.62 ± 0.31
0.70 ± 0.32

0.71 ± 0.25
0.74 ± 0.22
0.59 ± 0.28
0.70 ± 0.25

0.86 ± 0.22
0.90 ± 0.16
0.79 ± 0.24
0.85 ± 0.23

0.87 ± 0.24
0.87 ± 0.21
0.78 ± 0.29
0.83 ± 0.27

0.91 ± 0.25
0.90 ± 0.24
0.84 ± 0.29
0.86 ± 0.27

0.84 ± 0.30
0.91 ± 0.23
0.78 ± 0.34
0.82 ± 0.32

0.88 ± 0.28
0.84 ± 0.32
0.79 ± 0.36
0.82 ± 0.34

U-Net 0.82 ± 0.23
0.74 ± 0.31
0.62 ± 0.31
0.71 ± 0.31

0.73 ± 0.21
0.75 ± 0.20
0.63 ± 0.26
0.73 ± 0.31

0.90 ± 0.16
0.90 ± 0.14
0.82 ± 0.19
0.87 ± 0.17

0.88 ± 0.18
0.88 ± 0.19
0.80 ± 0.24
0.85 ± 0.21

0.87 ± 0.30
0.94 ± 0.14
0.83 ± 0.32
0.85 ± 0.31

0.90 ± 0.22
0.91 ± 0.18
0.83 ± 0.26
0.88 ± 0.24

0.87 ± 0.25
0.89 ± 0.23
0.81 ± 0.31
0.85 ± 0.29

5 Layer no-mod multi-pred 0.62 ± 0.34
0.80 ± 0.26
0.55 ± 0.32
0.64 ± 0.34

0.69 ± 0.29
0.64 ± 0.27
0.50 ± 0.30
0.61 ± 0.29

0.77 ± 0.28
0.92 ± 0.13
0.72 ± 0.28
0.79 ± 0.27

0.80 ± 0.32
0.86 ± 0.24
0.72 ± 0.34
0.77 ± 0.32

0.74 ± 0.40
0.87 ± 0.29
0.67 ± 0.43
0.70 ± 0.43

0.78 ± 0.36
0.88 ± 0.25
0.71 ± 0.39
0.74 ± 0.37

0.80 ± 0.36
0.82 ± 0.34
0.68 ± 0.42
0.71 ± 0.41

6 Layer no-mod multi-pred 0.75 ± 0.29
0.73 ± 0.29
0.61 ± 0.31
0.69 ± 0.32

0.73 ± 0.25
0.67 ± 0.26
0.55 ± 0.30
0.66 ± 0.27

0.80 ± 0.25
0.92 ± 0.13
0.75 ± 0.26
0.82 ± 0.25

0.86 ± 0.25
0.84 ± 0.25
0.76 ± 0.31
0.81 ± 0.28

0.80 ± 0.36
0.90 ± 0.25
0.74 ± 0.39
0.76 ± 0.39

0.84 ± 0.31
0.88 ± 0.25
0.77 ± 0.35
0.80 ± 0.33

0.85 ± 0.31
0.84 ± 0.32
0.74 ± 0.39
0.76 ± 0.38

5 Layer mod multi-pred 0.72 ± 0.32
0.75 ± 0.28
0.60 ± 0.32
0.69 ± 0.33

0.73 ± 0.25
0.67 ± 0.26
0.55 ± 0.30
0.66 ± 0.27

0.79 ± 0.27
0.92 ± 0.13
0.74 ± 0.28
0.81 ± 0.26

0.82 ± 0.29
0.86 ± 0.23
0.73 ± 0.33
0.79 ± 0.31

0.83 ± 0.34
0.89 ± 0.26
0.75 ± 0.39
0.77 ± 0.38

0.81 ± 0.34
0.87 ± 0.27
0.72 ± 0.38
0.75 ± 0.37

0.85 ± 0.32
0.86 ± 0.30
0.74 ± 0.38
0.77 ± 0.37

6 Layer mod multi-pred 0.77 ± 0.28
0.73 ± 0.30
0.62 ± 0.31
0.70 ± 0.32

0.74 ± 0.25
0.67 ± 0.26
0.56 ± 0.29
0.67 ± 0.27

0.80 ± 0.25
0.94 ± 0.12
0.76 ± 0.26
0.84 ± 0.25

0.87 ± 0.26
0.84 ± 0.24
0.75 ± 0.31
0.81 ± 0.28

0.86 ± 0.31
0.90 ± 0.24
0.79 ± 0.36
0.81 ± 0.35

0.90 ± 0.24
0.85 ± 0.28
0.79 ± 0.34
0.82 ± 0.32

0.88 ± 0.29
0.85 ± 0.31
0.76 ± 0.37
0.79 ± 0.35

7 Layer mod multi-pred 0.73 ± 0.29
0.78 ± 0.28
0.62 ± 0.31
0.71 ± 0.31

0.74 ± 0.25
0.67 ± 0.26
0.56 ± 0.29
0.67 ± 0.26

0.83 ± 0.24
0.91 ± 0.13
0.76 ± 0.25
0.84 ± 0.24

0.85 ± 0.26
0.87 ± 0.22
0.76 ± 0.30
0.82 ± 0.28

0.88 ± 0.30
0.88 ± 0.26
0.79 ± 0.36
0.81 ± 0.35

0.85 ± 0.30
0.88 ± 0.27
0.77 ± 0.35
0.81 ± 0.34

0.82 ± 0.35
0.85 ± 0.29
0.72 ± 0.39
0.75 ± 0.38

5 Layer mod multi-pred skip 0.75 ± 0.29
0.76 ± 0.28
0.63 ± 0.31
0.71 ± 0.31

0.73 ± 0.24
0.72 ± 0.23
0.58 ± 0.28
0.69 ± 0.25

0.84 ± 0.23
0.90 ± 0.14
0.78 ± 0.25
0.84 ± 0.23

0.88 ± 0.23
0.85 ± 0.24
0.77 ± 0.30
0.82 ± 0.27

0.91 ± 0.26
0.90 ± 0.26
0.82 ± 0.34
0.84 ± 0.33

0.82 ± 0.32
0.91 ± 0.22
0.76 ± 0.36
0.80 ± 0.34

0.83 ± 0.33
0.86 ± 0.29
0.74 ± 0.38
0.77 ± 0.37

6 Layer mod multi-pred skip 0.75 ± 0.29
0.77 ± 0.28
0.63 ± 0.31
0.71 ± 0.32

0.72 ± 0.25
0.75 ± 0.22
0.60 ± 0.28
0.71 ± 0.25

0.86 ± 0.23
0.89 ± 0.15
0.78 ±0.28
0.84 ± 0.23

0.85 ± 0.26
0.89 ± 0.21
0.77 ± 0.30
0.83 ± 0.28

0.91 ± 0.25
0.90 ± 0.24
0.84 ± 0.32
0.86 ± 0.30

0.86 ± 0.28
0.90 ± 0.24
0.79 ± 0.33
0.83 ± 0.31

0.88 ± 0.28
0.85 ± 0.30
0.77 ± 0.37
0.80 ± 0.35

7 Layer mod multi-pred skip 0.77 ± 0.29
0.71 ± 0.31
0.60 ± 0.32
0.68 ± 0.33

0.72 ± 0.26
0.67 ± 0.27
0.54 ± 0.30
0.65 ± 0.28

0.78 ± 0.27
0.92 ± 0.12
0.74 ± 0.27
0.81 ± 0.26

0.85 ± 0.28
0.84 ± 0.24
0.74 ± 0.32
0.80 ± 0.30

0.82 ± 0.34
0.90 ± 0.26
0.75 ± 0.39
0.77 ± 0.38

0.85 ± 0.30
0.86 ± 0.28
0.76 ± 0.36
0.80 ± 0.34

0.84 ± 0.32
0.85 ± 0.31
0.73 ± 0.39
0.76 ± 0.37
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in Table 2. This can be attributed to the fact that threefold 
cross-validation requires dividing the entire dataset into 
three equal parts. Thus, there were around 9,500 samples in 
the training dataset for cross-validation (which is 4,000 data 
less than our actual training set).

3.3  Discussion

The three tasks that we are trying to solve in this work 
are different, even though they require the same input; as 

a result, their encoded information is also somewhat dif-
ferent (for example, the segmentation task would require 
the spatial information, which the other two tasks might 
remove). Thus, our combined task model parameters, espe-
cially the encoding unit, has to be fine tuned to store the 
necessary encodings for all the tasks. This gives rise to 
four important observations:

1. Tables 1 and 2 show that the combined task models hav-
ing a convolutional layer in between the encoder and 
the decoder blocks gave much better performance than 
a direct connection between the blocks. Thus, these 
additional convolutional layers store those attributes/
features, which are essential only for the segmentation 
purpose.

2. Upon comparing our combined task model with the 
trained, solely for performing just one task (segmenta-
tion, for example), it is possible that the performance 
of the latter model might be better than ours for the 
same task; as was the case with the U-Net model (even 
though the performance difference is very small), where 
the encoder was required to store parameters for the 
segmentation task only. However, the performance of 
our model seems to be very impressive, when the per-
formances on all the three tasks are taken into consid-
eration, given that no individual model was created for 
these tasks.

Table 2  Evaluation of the models for all the three tasks on the five average metrics for the segmentation task, accuracy for the type prediction 
task, and MAE for the age prediction task

The model giving the highest value for each brain component and for each metric is indicated in bold. The highest values for each metric among 
the models developed in this work are underlined

AP AS AJ AD A AT MAE

Deep U-Net 0.85 ± 0.13 0.87 ± 0.11 0.77 ± 0.17 0.82 ± 0.15 0.97 ± 0.02 – –
FCN 0.86 ± 0.12 0.86 ± 0.11 0.77 ± 0.16 0.82 ± 0.14 0.97 ± 0.02 – –
U-Net 0.87 ± 0.11 0.87 ± 0.09 0.79 ± 0.14 0.85 ± 0.12 0.97 ± 0.02 – –
5-Layer no-mod multi-pred 0.78 ± 0.15 0.85 ± 0.13 0.70 ± 0.18 0.75 ± 0.16 0.96 ± 0.03 0.87 1.01 ± 2.07
6-Layer no-mod multi-pred 0.83 ± 0.13 0.85 ± 0.13 0.74 ± 0.18 0.79 ± 0.15 0.97 ± 0.03 0.88 1.07 ± 2.42
5-Layer mod multi-pred 0.82 ± 0.13 0.85 ± 0.12 0.73 ± 0.18 0.78 ± 0.16 0.97 ± 0.03 0.87 0.82 ± 1.88
6-Layer mod multi-pred 0.85 ± 0.13 0.85 ± 0.12 0.75 ± 0.17 0.80 ± 0.15 0.97 ± 0.03 0.88 0.94 ± 2.16
7-Layer mod multi-pred 0.84 ± 0.14 0.85 ± 0.12 0.75 ± 0.18 0.80 ± 0.16 0.97 ± 0.03 0.78 0.87 ± 1.65
5-Layer mod multi-pred skip 0.84 ± 0.13 0.86 ± 0.12 0.77 ± 0.17 0.81 ± 0.15 0.97 ± 0.03 0.89 0.99 ± 2.28
6-Layer mod multi-pred skip 0.85 ± 0.12 0.87 ± 0.11 0.77 ± 0.16 0.82 ± 0.14 0.97 ± 0.02 0.89 0.83 ± 2.02
7-Layer mod multi-pred skip 0.83 ± 0.14 0.84 ± 0.13 0.73 ± 0.19 0.79 ± 0.17 0.97 ± 0.03 0.84 0.98 ± 1.84

Fig. 3  Bar plot showing mean and SD on various segmentation met-
rics of MTSE U-Net

Table 3  Evaluation results 
of MTSE U-Net model on 
threefold cross-validation

AP AS AJ AD A AT MAE

First iteration 0.81 ± 0.16 0.85 ± 0.13 0.75 ± 0.20 0.78 ± 0.17 0.97 ± 0.03 0.85 0.92 ± 1.89
Second iteration 0.83 ± 0.15 0.86 ± 0.11 0.73 ± 0.18 0.78 ± 0.16 0.97 ± 0.03 0.88 0.94 ± 2.03
Third iteration 0.84 ± 0.13 0.85 ± 0.12 0.74 ± 0.17 0.80 ± 0.15 0.97 ± 0.02 0.86 1.07 ± 2.38
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3. A trade-off situation may possibly occur in between 
the performances of the segmentation and the predic-
tion tasks due to the differences in the required encod-
ing for these tasks. The trade-off is highest in the ‘no-
mod multi-pred’ models (Table 2). This effect has been 
reduced to some extent in the ‘mod multi-pred’ models, 
including the ones using a skip connection, because of 
the additional convolutional layer. It is also possible that 
the task ‘dominating’ the encoding unit may have an 
advantage over the other two.

4. Using a common encoder for all the three tasks has an 
advantage of reduced space required to store the model 
parameters, as compared to the combined space required 
for storing the model parameters performing these tasks 
individually. Less parameters imply less time taken by 
our model to give an output, and also less computational 
power requirement. Thus, a single model for the three 
tasks not only allows us to perform them simultaneously, 
but also ends up saving space, time, and energy.

Using a skip connection for the age and type prediction 
tasks has been found to be beneficial. The models using skip 
connections returned better results for both the segmentation 
and the prediction tasks, than their counterpart models not 
using one. Furthermore, the MTSE U-Net model showed the 
minimum above-mentioned trade-off, thus giving satisfac-
tory performances for all the three tasks.

Table 1 also shows that increasing the number of layers 
does not necessarily improve the performance of the model 
as in the case with the two 7-layer models, possibly because 
of the fact that excessive reduction in the image size also 
results in the loss of necessary information.

After checking the performance on the test set, we have 
compared the performance of the 5-layer mod multi-pred 
skip, 6-layer mod multi-pred, and MTSE U-Net models on 
two images to compare the quality of the outputs they return 
in Table 4. It shows the input image, the actual segmenta-
tion, the outputs returned by each model on all the three 
tasks and their evaluation results.

Both images are normal and non-blurred. For the first 
image, all the models returned accurate results, (though the 
second model returned slightly lower segmentation results 
than the other two). For the second image, the first model 
gave the worst results, particularly the wrong type prediction 
and a high MAE for age prediction. The next two models 
returned highly accurate predictions.

The MTSE U-Net model is tested on five more images of 
varying types to evaluate its performance. The images are 
arranged in a row-wise manner, with the actual segmenta-
tion, the model’s output, and the evaluation result shown just 
beside it on the same row in Fig. 4.

The model has been quite accurate with the segmenta-
tion of the first four images, of which, second and fourth 

are normal images and the other two are blurred images. 
The type prediction for all the images is correct. Type and 
age cannot be predicted for the first and the fourth image, 
as these slices do not belong to the middle portion of the 
brain. The age prediction for the second and third images is 
highly accurate. Finally, it can be seen that the performance 
of the model on the last image is not that good; however, 
upon observing the segmentation output, it is noticeable that 
the model has tried to smooth out the blurred portion of the 
input image (which is an effect of the motion correction we 
have introduce in the model), whereas the actual segmenta-
tion has maintained this effect. This difference can only be 
seen in those images, which were blurred by default in the 
dataset (and not in the ones, which we blurred out in the 
preprocessing step), and may account for the reduced seg-
mentation metric values to some extent. Thus, the model's 
performance on blurred images is also pretty impressive.

Despite low MAE, the age prediction task (for very few 
cases) is somewhat prone to relatively large errors in predic-
tions, which accounts for the high standard deviation. This 
may be attributed to three reasons:

1. A 2D slice slightly away from the center of the brain 
may somewhat resemble the center slice of a younger 
fetal brain. Thus, the model may confuse between such 
slices.

2. Although the model was trained to predict age for both 
brain types, yet, a pathological brain highly differs from 
a neurotypical brain in its brain structure (Fig. 5), which 
might confuse the model into making wrong predictions. 
Also, different pathological conditions give rise to dif-
ferent fetal brain structures. Thus, an ambiguity in age 
prediction remains.

3. Even though the model was also trained to predict age 
from blurred images, yet, highly blurred out images 
often obscure the overall development in the brain (as 
was the case with the last image in Fig. 4); thus, the 
model may produce wrong predictions in such cases.

Finally, we have also shown the salient regions identi-
fied by the bottom-most convolutional layer of the model 
for type and age prediction in four input images (Fig. 6). We 
have used Grad-CAM (Selvaraju et al. 2017) for this purpose 
and these regions are represented as heat maps overlaid on 
the actual image. The lowest layer is chosen because it will 
best represent the features learnt/extracted by it or any of its 
previous layers; incorrect region identification represents a 
wrong feature extraction by this layer, or any of its previous 
layers.

The red regions in Fig. 6 represent the regions that (as 
per the model) are most influential in making the predic-
tion, followed by the yellow, green, and blue regions (which 
represent the least significant regions). It can be seen that 
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for the first three images, the layer identified the regions 
accurately for proceeding with its predictions (the model 
also captured a small background region close to the brain 
with a low confidence, as indicated in the heat map. This 
is required to make sure that the model did not miss out 
on any of the brain part in the image while making pre-
dictions). But the model identified a wrong region in the 
last image. However, such cases are very few, as we found 
during experimenting with different input images and also 
as indicated by the prediction results. Finally, these region 
highlights are not required for the segmentation task because 

the task performance itself represents the model’s salient 
region identification capability.

Now, as stated earlier, all of the models were created 
using 2D slices of the 3D samples. Thus, a possible future 
work can be to extend this work to the third dimension. 
This might help, especially, in the type and age prediction 
task, and also provide a remedy to the above-mentioned 
problem. For example, the model can more surely con-
clude that the age cannot be predicted from a group of 
slices if it sees a continuous increase or decrease in the 
size of the brain, indicating that the center of the brain is 

Table 4  Testing the performance of three models on two images

Input image Actual segmentation Model used Outputs Evaluation

Segmentation Type prediction Age prediction

  

6 Layer mod multi-
pred

 

‘Type cannot be 
determined from 
the slice’

‘Age cannot be 
determined from 
the slice’

AP = 0.94
AS = 0.93
AJ = 0.90
AD = 0.94
A = 0.97
AT = 1.0
MSE = 0.0

5 Layer mod multi-
pred skip

 

‘Type cannot be 
determined from 
the slice

‘Age cannot be 
determined from 
the slice’

AP = 0.83
AS = 0.94
AJ = 0.78
AD = 0.82
A = 0.98
AT = 1.0
MSE = 0.0

MTSE U-Net

 

‘Type cannot be 
determined from 
the slice’

‘Age cannot be 
determined from 
the slice’

AP = 0.95
AS = 0.94
AJ = 0.90
AD = 0.94
A = 0.97
AT = 1.0
MSE = 0.0

  

6 Layer mod multi-
pred

 

‘Neurotypical’ 29.6 weeks AP = 0.80
AS = 0.86
AJ = 0.67
AD = 0.76
A = 0.91
AT = 0.0
MSE = 3.5

5 Layer mod multi-
pred skip

 

‘Pathological’ 33.0 weeks AP = 0.80
AS = 0.91
AJ = 0.73
AD = 0.79
A = 0.93
AT = 1.0
MSE = 0.1

MTSE U-Net

 

‘Pathological’ 33.1 weeks AP = 0.80
AS = 0.91
AJ = 0.73
AD = 0.79
A = 0.93
AT = 1.0
MSE = 0.0
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not present in the group of slices for the model to make 
accurate predictions. This facility cannot be utilized in 
2D slices. Other future prospects can include classifica-
tion of the fetal brain into more specific conditions like 
Dandy–Walker malformation, colpocephaly, mega-cisterna 

manga, etc., and search for additional features and obser-
vations and develop models that work on 2D slices and 
provide better performance.

Fig. 4  Evaluating the MTSE 
U-Net model on five images

Fig. 5  Difference in the fetal 
brain structures between neu-
rotypical and pathological fetal 
brains of similar gestational age
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4  Conclusion

In this paper, we proposed MTSE U-Net, a deep learning 
architecture, for performing three tasks (and thus having 
three outputs): segmentation of the brain into its seven major 
components and prediction of the fetal brain type (‘Patho-
logical’ or ‘Neurotypical’) and the gestational age at the time 
of scanning. The input is the 2D fetal brain slices. This can 
be obtained after segmenting the fetal MRI to return the 
fetal brain image, which explains our work as an extension 
of already existing works on segmentation of the fetal MRI. 
Our work is inspired by the U-Net architecture. We have 
tested out the model on our test set and also on some indi-
vidual inputs and analyzed them. The results for all the tasks 
have been convincing. We have also compared our model 
with some state-of-the-art models and showed that it can 
perform multiple tasks simultaneously with good accuracy, 
thus eliminating the need to use individual models for all 
of these tasks. The limitations and drawbacks of the mod-
els have also been discussed above along with the possible 
future works.

Data availability We have used the FeTA 2.1 Dataset (Fetal Tissue 
Annotation Dataset of University Children’s Hospital Zurich) to train 
and test our model (Payette et al. 2021). It contains 3D fetal brain MRI 
volumes of 80 fetuses of both pathological and neurotypical types in 
the gestational age ranges of 20–35 weeks. Each volume is accompa-
nied by its segmented counterpart and has the shape 256 × 256 ×  256

Code availability The source code is available at: https:// github. com/ 
tg2001/ MTSE-U- Net.
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