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A B S T R A C T   

Background and objective: Automatic segmentation and annotation of medical image plays a critical role in sci-
entific research and the medical care community. Automatic segmentation and annotation not only increase the 
efficiency of clinical workflow, but also prevent overburdening of radiologists. The objective of this work is to 
improve the accuracy and give a probabilistic map for automatic annotation from small data set to reduce the use 
of tedious and prone to error manual annotations from chest X-rays. 
Method: In this paper, we have proposed an attention UW-Net, which introduces an intermediate layer acting as a 
bridge between the encoder and decoder pathways. The intermediate layer is a series of fully connected con-
volutional layers generated from the upsampling of the final encoder layer connected to the corresponding up 
sampled and down sampled blocks via skip-connections. The intermediate layer is further connected to the 
decoder pathway using a downsampling layer. 
Results: The proposed attention UW-Net is giving a very good performance, achieving an average F1-score of 
95.7%, 80.9%, 81.0% and 77.6% for lung (large), heart (medium), trachea (small), and collarbone (small) object 
segmentations, respectively. The attention UW-Net outperforms not only in comparison to U-Net and its varia-
tions but also with respect to other standard recent automatic and semi-automatic segmentation/annotation 
models. An ablation study was also performed to find the best suited high-performing architecture. 
Conclusion: The uniformity in prediction accuracy of segmentation masks for all kinds of segmentation masks 
(large, medium, and small lesions) makes this model best for automatic annotation of organs.   

1. Introduction 

The increasing volume of clinical data in medical imaging needs a 
fast identification and analysis of specific features in X-ray images. But 
analysis of many X-rays for a long time reduces the speed and accuracy 
of radiologists’ annotation and diagnosis of diseases, thereby slowing 
down imaging technicians in capturing, screening, and diagnosing pa-
tient data. With the advent of U-Net [1], there has been a resurgence in 
the field of computer vision in medical imaging using deep learning 
architectures, especially for semantic segmentation. The state-of-the-art 
techniques for semantic segmentation include variants of U-Net [2] such 
as Residual and Attention U-Nets along with the characteristic 
encoder-decoder architectures such as ResNet [3] and Dense Net [4]. 
These architectures share a key similarity, the skip connections. These 
skip connections are followed by copy and concatenation blocks. The 
skip connections along with attention blocks have enabled the model to 

emphasize key semantic features and dependencies which in turn helps 
in the detection of finer details of target objects. 

One major difficulty in chest X-ray (CXR) segmentation and anno-
tation is due to its variation in shape, size (due to age), gender, and the 
overlapping of clavicles and rib cage [5]. Moreover, the positional 
relationship of the heart with respect to the left and right lung is crucial 
for the generation of an accurate segmentation mask of the heart. 
However, when medical experts annotate the lung fields, they look for 
certain consistent structures surrounding the lung fields. Most of the 
recent works on medical imaging have been focused on Magnetic reso-
nance imaging (MRI) [6], positron emission tomography (PET) [7] and 
classification of X-ray scan images [8] of brain, breast, liver, chest and 
prostate regions for an anomaly, tumor, and cancer detections. The 
U-Net has outperformed almost all previously known deep-learning 
models for target lesion segmentation and is recognized as a go-to 
model for segmentation tasks. However, the previously mentioned 
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models along with U-Net have several limitations that have not been 
addressed. One of the limitations is their inability to accurately predict 
smaller objects and showcase the anatomical features intrinsic to the 
segmented organs/regions of interest (ROIs) in the predicted masks. 
These features include the physical distance of separation between 
multiple organs. One of the limitations the proposed model aims at 
solving is the identification of the objects of interest with a nonstandard 
shape when no other image-derived features are involved. 

Given the limitations of U-Net architecture and the lack of a gener-
alized model in the domain of X-ray scans that work equally well for 
small and large objects of interest using a small image data set, this 
paper focuses on the 2D CXR images and proposes a modified version of 
the popular U-Net model which we call UW net. Finally, we implement 
attention gates to further improve the prediction accuracy of attention 
UW-Nets for small lesion segmentation. We introduced an intermediate 
layer which is a series of fully connected convolution layers connected to 
the corresponding encoder and decoder layers by skip connections. It 
helps in reducing the semantic gap between feature maps of encoder and 
decoder layers and makes the model focus on intrinsic details by re- 
introducing the features lost during downsampling actions. We also 
implement attention layers in the UW-Net architecture to enable local-
ization of essential features and improve accuracy for small lesion 
segmentation. 

The rest of the section is described as follows: Section 2 describes the 
literature review, and Section 3 discusses the model, the dataset used 
and the implementation details. Section 4 showcases the results ob-
tained after performing a comparative study of the proposed attention 
UW-Net via comparison with other models of the U-Net family and with 
other segmentation models. Section 5 is used to discuss the ablation 
study performed on the attention UW-Net. Finally, we conclude our 
paper in Section 6. 

2. Literature review 

X-ray is a widely used manual screening technique used by medical 
practitioners to detect abnormalities in the chest region. CXR images 
provide information about the size, shape and location of the heart, 
lungs, bones and bronchi using X-rays. The implementation of several 
deep learning architectures trained on Graphics processing unit (GPU) 
based platforms have elevated the accuracy of medical image segmen-
tations, due to their capability of handling large number of image 
datasets. However, this requires many time-consuming annotated data 
not only for the medical practitioners but also for the training of a 
model. 

Early works on lung segmentation from CXR image included 
knowledge-based method approach [9] to make a clear distinction be-
tween low-level and high-level processing applied on raw data by 
mapping image edges associated with the anatomical model of lung 
boundary using parametric features. However, such techniques are 
noise-sensitive, thereby failing to generate a proper segmentation mask. 
To overcome this problem, various edge detection filters such as canny 
edge-detection and morphological operations [10] like dilation and 
erosion were used to produce segmented masks similar to the ground 
truth masks. However, these techniques can neither handle complex 
images nor segment smaller regions of interest. 

With the advent of fully convolutional networks (FCNs) like Visual 
Geometry Group (VGG) Net [11] and ResNet were used to segment 
bio-medical images. The ability to extract high-level features using a 
fully connected down-sampling path followed by an up-sampling path 
led to the development of the Structural Correcting Adversarial Network 
(SCAN) [12] to segment lung fields and heart in CXR images by 
exploiting the generative power of graph variational encoders. The critic 
network guides the fully convolutional segmentation model to achieve 
precise segmentation masks. However, the fixed receptive size of FCNs 
and the huge class imbalance between foreground and background re-
sults in inaccurate segmentations of small organs. 

The FCN approach needed a large amount of training data. Training 
such datasets incurred an increased runtime for the successful imple-
mentation of these models. To address the issue of increased time frame, 
stochastic computing was interwoven into Deep Convolutional Neural 
Networks (DCNNs) [13]. After the development of DCNN, Ronneberger 
et al. developed a novel state-of-the-art architecture, U-Net, as an 
extension of the FCN approach to address the problem of data avail-
ability. As shown in Fig. 1. U-Net consists of two main parts: the con-
volutional encoding and decoding units. The basic convolution 
operations are performed, followed by RELU activation in both network 
parts. For downsampling in the encoding unit, 2 × 2 max-pooling op-
erations are performed. In the decoding phase, the convolution trans-
pose (representing up-convolution or de-convolution) operations are 
performed to up-sample the feature maps. One main drawback of this 
architecture is that the skip connections impose an unnecessarily 
restrictive fusion scheme, forcing aggregation only at the same scale 
feature maps of the encoder and decoder sub-networks. 

The architecture is for an input image of size (128 × 128 × 3). Each 
orange box corresponds to a multi-channel feature map. White boxes 
denote the multi-channel feature maps which are concatenated to the 
up-sampled feature maps in orange. Arrows denote operations. 

The inability to solve the problem of small lesion segmentation and 
limitation to detect the organs of interest with a non-standard shape 
resulted in the development of several modified versions of the afore-
mentioned architecture, which included the addition of attention gates, 
previously limited to natural language processing to be used in medical 
image segmentation tasks. The recursive usage of attention gates [14] 
was used to increase the receptive fields of convolutional filters and 
consider the relationship between tissues at a global level. However, the 
difficulty in reducing false positive predictions for small objects posed a 
hurdle for the effective generation of segmentation masks for smaller 
objects of interest. Deep learning models like bi-directional LSTMs (Long 
Short-Term Memory) [15] are used in NLP (Natural Language Process) 
to further enhance the outcomes of predicted masks by incorporating 
both spatial and temporal information. Most of the recent works on 
medical imaging, such as COVID-Net [16] have focused on anomaly 
detection and localization of lungs from CXR images [17,18] which in 
turn helps in the detection and classification of pulmonary diseases such 
as pneumonia [19] and COVID-19 [20] to name a few. However, 
COVID-Net uses a high number of images for training. In contrast, fully 
convolutional neural network for automatic lung segmentation [19] 
uses a number of post-post-processing techniques such as hole-filling 
algorithm to obtain desirable results. Other mentioned models incor-
porate pre-processing techniques such as image cropping to enlarge the 
aspect ratio of the targeted anomalous regions. The mentioned draw-
backs have paved the way for the introduction of meta-heuristic ap-
proaches [21] to deep learning models. Their ability lies in solving 
complex optimization problems and multi-objective problems. As a 
result, learning-based optimization approaches such as Monarch But-
terfly Optimization (MBO) [22], Earthworm Optimization Algorithm 
(EWA) [23], Moth Search (MS) algorithm [24], Slime Mould algorithm 
(SMA) [25], Hunger Games search (HGS) [26], Runge Kutta optimizer 
(RUN) [27], Colony Predation Algorithm (CPA) [28], and Harris Hawks 
Optimization (HHO) [29], Particle Swarm Optimization (PSO) [30], 
Dynamic Learning Evolution Algorithm [31] and Learning based 
Elephant Herding Optimization (EHA) [32] in deep-learning ap-
proaches. These algorithms are highly scalable and robust in terms of 
handling problems involving huge data points. However, the solutions 
obtained by swarm intelligent algorithms such as PSO, HHA, MBO, EHA, 
SMA, and CPA converge prematurely and have poor local optimization 
ability resulting in poor performance in complex optimization problems. 
Evolutionary algorithms such as GA and algorithms such as RUN are 
complex and have a higher runtime to find a convergent solution. The 
trade-off in terms of complexity versus accuracy is not good to replace 
classical/traditional optimizers. In addition, these models not only suf-
fer from the problem of unbalanced exploitation but also fail to account 

D. Pal et al.                                                                                                                                                                                                                                      



Computers in Biology and Medicine 150 (2022) 106083

3

for the intrinsic qualities such as texture which are inherent to the 
segmented organs. Recent developments take care of the drawback of 
ignoring the spatial distribution of the regions of interest in a higher 
dimensional space by including the addition of image-to-graph localized 
skip connections to give anatomically plausible segmentation results. 
The output graphs are directly sampled from a 2-D distribution learnt 
during training from the bio-medical images and are then projected on a 
2-D latent space [33]. This modification is further implemented in 3-D 
images by a model architecture known as Voxel2Mesh [34]. It is built 
on the idea of deforming an elliptical mesh template topology. 

The main challenge of the heterogeneous appearance of the target 
organ segmentation and annotation is still an open problem in medical 
image segmentation. The target organ or lesion may vary hugely in size, 
shape, and location from patient to patient. The size of the convolution 
kernel in the encoding and decoding layers of U-Net is fixed. Therefore, 
the diversity of features is lost due to the fixed receptive field of the 
convolutional layers. The sliding window approach was implemented in 
a few research to solve this problem. However, in the case of smaller 
targets, the sliding window approach fails to efficiently detect essential 
features required for accurate segmentation due to the receptive field of 
the convolution kernel being too large. Another limitation lies in 
detecting the physical distance relationship for multiple annotated 
segments/regions of interest (ROIs) or when the border of the organs of 
interest is unclear during manual annotations. All existing methods have 
failed to address the abovementioned problem, thereby failing to give 
accurate segmentation masks for small, medium, and big lesion seg-
mentation on the same scale. To address the existing problem, we pro-
posed an attention UW net with the following major contributions: 

• The encoder-decoder architecture of U-Net has a sequence of con-
volutional layers which are fed forward to the decoder layer. This 
leads to the network learning redundant feature. The proposed 
network addresses the problem by adding a novel intermediate layer 
in between blocks B-5 and B-6 of the original U-Net architecture. This 
intermediate layer acts as a densely connected layer which helps the 
network learn a diverse set of features instead of redundant features.  

• The intermediate layer aims at reinforcing the bottleneck of U-Net to 
enable a better exchange of intrinsic feature vectors. An added skip 

connection makes the network learn the details lost in the prior max- 
pooling steps and improves the representational power by reusing 
the features and enables the flow of information and combining the 
extracted features between the up sampled and down sampled layers. 

• A modified attention gate was implemented in the proposed archi-
tecture to further improve the prediction accuracy for segmentation 
of small lesions. Modifications were made, precisely in the resam-
pling of attention vectors, by replicating the vector space generated 
in the channel axis. This modification improves the performance of 
the network for small lesion segmentations by reducing information 
loss.  

• Changing the way attention vectors are generated reduces the 
number of redundant pixels predicted as a segmentation mask (false 
positive predictions) not only improves the accuracy but also pro-
vides precise segmented masks of small lesions.  

• Generating accurate segmentations for small and large lesions with a 
limited number of images (125 images) as training data. The pro-
posed model achieves these results without using any pre- or post- 
processing techniques and without any pre-trained weights. 

3. Proposed methodology 

3.1. Dataset 

Since the availability of large number of annotated samples is a 
challenge, we use the NIH Chest X-ray Dataset [35] which consists of 
112,120 X-Ray images with disease labels of 14 different disease classes 
with an additional class for “no findings”. However, the unavailability of 
ground truth was a big challenge. Since manual annotations of small 
lesions takes considerable time a subset of 200 CXR was used as a 
dataset. In order to maintain generality and uniformity of the available 
data, the images were randomly sampled from the 14 classes. 

3.2. Data annotations and splitting 

Manual annotation of the dataset was done using VGG annotator 
[36]. Each image had an original dimension of 1024 × 1024 which was 
down sampled to a fixed dimension of 128 × 128 for significantly 

Fig. 1. The basic U-Net architecture.  
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accelerating the implementation of segmentation without compro-
mising the accuracy. The n-gon was filled with 1 using fill function and 
augmented to an array of dimension 128 × 128 comprising of 0s to 
create the binary masks, representing the ground truth for validation of 
the data. The dataset was split into 120 images for training, 30 for 
validation and 50 for testing. 

3.3. Attention UW-net architecture 

The overall architecture of Attention UW net is shown in Fig. 2. The 
orange boxes represent feature vectors; the white boxes represent copied 
feature vectors to be concatenated. The yellow boxes represent the 
modifications done to the existing U-Net architecture. The grey arrows 
represent skip connections. Attention gates are represented by coloured 
circles, and dotted arrows represent the gating signals. The dashed 
rectangle represents the modified attention gate. The novel architecture 
is named as attention UW-Net since the architecture has a resemblance 
to the letter ‘W,’ uses a modified version of attention gates and has U-Net 
as a backbone (see Fig. 2). The proposed architecture has an encoding 
path followed by the intermediate layer and the decoding path. The 
attention layers followed by the skip connection act as a connection 
between different layers. 

Encoding Path: The encoding path consists of five fully connected 
steps. Each step comprises of a series of block. The operation performed 
on each block of any step of the encoding path can be represented as a 
series of convolutional layer followed by a max-pooling layer. Each 
convolutional layer consists of a convolutional filter having a filter size 
of 3 × 3 followed by a RELU activation function, repeated twice. It is 
subsequently followed by a max-pooling layer of filter size 2 × 2. The 
purpose of the encoding path is to progressively extract features for 
image representations, increasing the dimensional representation of 
image. However, the proposed attention UW net architecture deviates 
from the U-Net architecture in the final step. Unlike the final step of U- 
Net, which comprises of a series of convolutional layers, the final step in 
UW-Net is considered as an extension of the previous encoding path and 
that has the same number of operations performed as in the other layers. 

Intermediate Layer: The encoding path is connected to the interme-
diate layer (represented as a light blue box in Fig. 2), which is repre-
sented as an orange box in Fig. 2. The intermediate layer consists of a 

series of densely connected convolutional layers, which is responsible 
for improving the model performance by allowing the model to learn 
better intrinsic features. Since the last block of encoding layer has the 
largest filter size and the convolutional operations take place over the 
smallest input vector, it is responsible for the generation of the richest 
feature vectors. This layer acts as a bridge between the encoded and 
decoded paths of the network. However, unlike the U-Net, the inter-
mediate layer combines feature maps of the fourth step of the encoder 
path with the last block of the encoder path using the horizontal skip 
connections, thus re-injecting the details lost during the max-pooling of 
the final encoder block. Inspired by the ability of attention gates to 
localize intrinsic feature vectors, as showcased in attention UW-Net, the 
model uses attention gates before the skip connections to enable better 
transfer of feature vectors to the corresponding steps of the encoder and 
decoder paths. The intermediate layer then goes through a series of 
consecutive convolutional layers before being down-sampled via max- 
pooling function. The series of operation is formulated as: 

IA =Conv
( [

A
(
xi+1, xi)]) (1)  

where IA represents the output feature maps of the intermediate layer of 
the attention UW-Net, Conv(.) represents the convolutional operation, 
A(y, x) represents a bivariate function which takes two feature maps as 
an input and returns an attention guided feature map as an output, U(.) 
represents the Up-sampling operation, [] represents the concatenation 
operation, x represents the output feature map of ith layer of the encoder 
pathway, where ‘i’ represents the layer number from the top to the 
bottom of the attention UW-Net ‘varying from 1 to 5. The feature vectors 
are represented as xi ∈ RH×W×C where H, W and C represents the di-
mensions of height, width and channel of vector. The intermediate layer 
IA takes two feature vectors from the last two encoder blocks and feeds 
them into the attention gate. The output goes through a series of con-
volutional filters followed by activation layers. The intermediate layer is 
down sampled and is then connected to the decoding path. The repeated 
usage of attention gates over the re-distributed feature maps suppresses 
feature responses from irrelevant background regions. This effectively 
acts as a cropping operation of a denoised image based on the ROIs 
without using morphological operations. The repeated distribution fol-
lowed by accumulation of the feature maps highlights the essential 
features and prune redundant feature responses, thereby preserving 

Fig. 2. The proposed attention UW-Net architecture.  
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features relevant to the segmented task. 
Decoding Path: The decoding path consists of five steps. Each step 

starts with an up-sampling of the feature maps followed by the concat-
enation of the attention guided feature maps. These concatenated 
feature maps are passed through two consecutive convolution opera-
tions followed by RELU activations. The convoluted and transformed 
feature vectors serve as a gating signal for the superior attention gate in 
terms of the hierarchy of individual block. The final step of the decoder 
path comprises of three blocks. The first two blocks comprise of two 
convolutional layers. The output of the last convolutional layer is fed to 
a 1 × 1 convolutional filter to map each 16-component feature vector to 
the required number of classes. In total this architecture has two paths 
each containing five steps, one intermediate layer, 5 attention gates and 
5 skip connections to concatenate the required feature maps from 
encoded path to the decoded path. The entire architecture with respect 
to the feature maps with respect to the feature maps of the intermediate 
layer defined in equation (2) is represented as follows: 

yi =

{
Conv

( [
A
(
yi+1, xi),U

(
yi+1)]) i ∕= 4

Conv
( [

A
(
IA, yi+1),U

(
yi+1)]) i = 4 ∀  i  ∈ [1, 4] (2)  

where yi represents the output feature map obtained from the ith step of 
the decoding path. 

Modified Attention gate: The modified attention gates, represented in 
Fig. 3, enable the model to generate effective segmentation masks for 
segmentation of smaller regions of interest. The attention UW-Net makes 
the full utilization of the attention gates and their ability to simplify the 
localization of intrinsic features required for better representation of 
images in a higher feature space. The implementation of attention gates 
is mathematically formulated as: 

A
(
yi+1, xi)=G

(
g
(
yi+1), xi) (3)  

where G(.) represents the attention gate and g(.) represents the gating 
signal and a represents the output feature map of attention gate (AG). 

Fig. 3 showcases the attention gate architecture where xi and g(yi+1)

represent the input signal and gating signal respectively. These signals 
are fed to the attention gate to obtain an output signal αi comprising of a 
series of attention vectors ranging between 0 and 1. 

The attention gates (AGs) used in the proposed model use soft 
attention to address the issue of detection of extra pixels as predicted 
output for small objects that show huge variations in shape. Soft 
attention therefore reduces the false positive predictions for small ob-

jects with ambiguous shape. These AGs produce attention coefficients αi 
∈ [0,1] for each pixel which helps in scaling the input feature maps 
denoted as xi to produce relevant features as output, depicted as x̂i . The 
attention gates take two feature vectors namely as FG ∈ RHG×WG×CG and 
FI ∈ RHI×WI×CI as input vectors. FG represents the features from the 
gating signal represented as g(.) in equation (3) and FI represents the 
input signal from convolutional blocks connected via skip connections. 
The vectors FG and FI are represented in equation (3) as g(yi+1) and xi. In 
the attention gate represented in Fig. 3, FI is passed through a Convo-
lution layer with (2 × 2) filter having stride = 2 to generate a vector 
FConv

I ∈ RHG×WG×CI and FG is passed through a Conv2DTranspose layer 
with a (3 × 3) filter to generate a vector FC2T

G ∈ RHG×WG×CI . 

xi =FConv
I = WT

x xi (4)  

g
(
yi+1)=FC2T

G = WT
g g

(
yi+1) (5)  

where Wx and Wg are the linear transformation vectors and bg is the bias 
term. 

These feature vectors are then added and passed onto a RELU acti-
vation function (σ1) to produce intermediate activation maps αi with 
layer-wise attention co-efficient represented as qA. The layer-wise 
attention co-efficient passed through a sigmoid activation function 
(σ2) and duplicated along the channel axis ‘C’ to obtain an attention 
vector FA ∈ RHI×WI×CI . 

qA =Conv
(
σ1
(
FConv

I +FC2T
G

))
(6) 

Normally attention gates obtain feature vectors by resampling them 
using bilinear interpolation. Since linear interpolation techniques uses 
local tendency to make guesses aimed at finding intermediate values, it 
might result in distortion of feature vectors with respect to the inter-
mediate vector space. The linearization of the resampled data also re-
sults in the generation of fewer numbers of extreme points (global 
maxima). The duplication along the channel axis avoids resampling 
feature vectors by converting the 2-dimensional vector space to 3-D, 
thereby matching the dimensions of the input vector FI. The attention 
co-efficient is computed by an element-wise product of the input vector, 
FI with the attention vector: 

αi = σ2(U(qA)×CI).FI (7)  

where ×CI represents the duplication of feature vector operation and ‘.’ 

Fig. 3. The schematic diagram of the modified attention gate.  
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represents the element-wise multiplication operation. The attention co- 
efficient scales the low-level signals and retain the intrinsic features 
essential for accurate segmentations. These features are then passed 
through a convolution layer followed by a batch-normalisation layer. 

3.4. System and environment 

The proposed semantic segmentation model is developed in Tensor 
Flow 2.0. The network is trained on an Intel RTX A4000 chip and Intel i9 
processor, using Adam as an optimizer for 200 epochs with a learning 
rate of 0.001 and binary cross-entropy is used as loss function. The batch 
size is set to 8 and the convolutional layer filter size is set to 16, 32, 64, 
128 and 256 from the top to the bottom of the attention UW-Net. 

4. Results 

One output of the proposed Attention UW-Net for individual seg-
mentation and annotation tasks of the lungs, heart, trachea and collar-
bone is shown in Fig. 4(A). Fig. 4(B) and (C) comprises the probability 
maps of the final augmented and segmented image. The final images (as 
referred to in Fig. 4(B) and (C)) give complete information regarding the 
outlines, positions and areas covered by individual organs, collectively, 
in terms of the input CXR image. The accuracy of the individual 
segmented and annotated outputs has been visualized from the indi-
vidual ground truth masks in the second column. The augmented output 
is the final output of a 2D CXR image generated by the proposed model. 

The proposed attention UW-Net achieved the best effect on the 
aforementioned training set with the highest average F1 score [37] of 
95.7, 80.9, 81.0 and 77.6 for lung, heart, trachea and collarbone seg-
mentations, respectively (see Table 1). The average, maximum, 

minimum and standard deviation scores of performance metrics ob-
tained using other evaluation metrics specificity, recall, precision, and 
F1 are shown in Table 1. 

The metrics in Table 1 showcase the accuracy metrics, namely 
specificity, recall of 94, precision and F1 of the attention UW-Net. The 
proposed model gives an average specificity score of 98.8. The speci-
ficity score gives an estimate of how well the model can detect false 
positive pixels. The average precision score of 83.0 by the model sig-
nifies its ability to classify the relevant number of positive pixels as 
positive, whereas the average recall score of 87.9 means that the model 

Fig. 4. A) The predicted annotation and segmentation images for individual segmentation tasks, namely lungs (I), heart (II), trachea (III), and the collarbone (IV), 
using attention UW-Net with respect to the ground truth mask. B) The probability map of the annotated CXR image obtained as final output. C) The probability map 
of the segmented CXR image obtained as final output. 

Table 1 
Performance metrics of proposed attention UW net in terms of evaluation met-
rics such as specificity, recall, precision and F1 score.  

Organs Format Specificity Recall Precision F1 

Lungs Mean ±
SD 

98.8 ± 0.8 94.9 ± 2.5 96.6 ± 1.8 95.7 ± 1.4 

Max- Min 99.7–94.3 98.8–89.0 98.9–92.7 97.8–88.7 
Heart Mean ±

SD 
97.8 ± 1.1 95.8 ± 7.8 77.7 ± 9.6 80.9 ± 7.3 

Max- Min 99.9–94.9 99.5–70.7 99.8–48.7 91.6–58.3 
Trachea Mean ±

SD 
99.4 ± 0.2 79.4 ± 7.4 83.1 ± 6.0 81.0 ± 5.2 

Max- Min 99.8–98.7 99.9–62.7 95.4–69.7 89.9–70.8 
Collarbone Mean ±

SD 
99.4 ± 0.2 81.7 ± 8.9 74.7 ± 8.5 77.6 ± 6.3 

Max- Min 99.8–98.9 92.2–57.4 86.8–54.4 85.7–62.4 
Average of (Mean ± SD) 98.8 ± 0.5 87.9 ± 

6.6 
83.0 ± 
6.5 

83.8 ± 
5.0 

* Avg = Average (Mean values), SD = Standard Deviation, Max = Maximum and 
Min = Minimum F1. 
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can classify negative pixels as negative with a very high success rate. 
Table 1 displays the model’s average F1 score for the four different 
segmentation tasks to be 83.8. The F1 score is the harmonic mean of 
precision and recall scores account for such a high score. This high 
precision score results in the model providing near similar predicted 
masks as the ground truth mask, which is validated in the comparative 
studies performed against other models and the ablation study on the 
intermediate late of the attention UW-Net. 

To establish the robustness and effectiveness of the proposed 
Attention UW-Net model, we also compared U-Net, and its different 
variations and other widely used automatic and semi-automatic seg-
mentation models. 

4.1. Comparison with respect to U-net families 

The segmented mask for annotation of attention UW-Net with other 
U-Net families is shown in Fig. 5. The visualization shows attention UW- 
Net performing better than all other U-Net [2], U-Net with ResNet 
backbone [37], Attention U-Net [13], Trans U-Net [38], and Swin U-Net 
[39] with U-Net family. 

The Swin U-Net and U-Net perform better than Trans U-Net, as 
shown in Fig. 5(G), (H) and 5(I), respectively. The inability of the Trans 
U-Net to provide a segmented output mask for trachea segmentation and 
an abrupt-shaped heart mask is clearly portrayed in Fig. 5(I). The U-Net 
was unable to provide a detailed and complete collarbone segmentation 
mask in Fig. 5(H), thereby showcasing its limitations in segmenting 
small lesions. Swin U-Net, on the other hand, not only failed to provide 
well-defined boundaries for the segmented organs but also was 
providing an abrupt shape for the prediction of a heart mask (as seen in 
the predicted heart mask in Fig. 5(G)). Attention U-Net, shown in Fig. 5 
(E), gives the best output segmentation masks among the U-Net varia-
tions, followed by the U-Net model having a ResNet backbone, as seen in 
Fig. 5(F). The attention U-Net performed surprisingly well in terms of 
small lesion segmentations, whereas the ResNet backbone variation 
failed to predict the collarbone mask with an acceptable shape and 
distance of separation between the left and right collarbones. 

Attention U-Net maintains the shape of the segmented organs but 
fails to capture the intrinsic details of the segmented organs, especially 
in the case of trachea and heart segmentation, showcased in Fig. 5(E), 

where the latter output mask fails to showcase the proper size to height 
ratio. The U-Net with ResNet as a backbone also fails to maintain the size 
ratio of the trachea with the branched bronchi, as is visible in Fig. 5(F). 
The proposed architecture outperforms all the compared U-Net and its 
variations, as seen in the predicted segmented masks showcased in Fig. 5 
(C). The output segmentation masks maintain both the shape and details 
of the target organs except for heart segmentation which fails to show-
case the perfect height to width ratio. The details showcased in the lung 
and collarbone segmentation mask clearly establish the need for atten-
tion gates in the proposed architecture. The UW-Net without attention 
gates, as a result, fails to showcase the intrinsic details such as the left 
and right bronchi for the trachea mask in Fig. 5(D) and the proper size 
for the heart segmentation. The high imbalance of classes is visible, 
especially for the collarbone segmentation mask as showcased in the 
ground truth mask for collarbone segmentation as is showcased in Fig. 5 
(B), making it difficult for automatic segmentation. 

Five different models were implemented on the same dataset for 
evaluation and comparison purpose for quantitative analysis, which 
includes: U-Net [2], U-Net with ResNet backbone [39], Attention U-Net, 
Trans U-Net [40], Swin U-Net [41], the proposed attention UW-Net and 
UW-Net. To maintain uniformity in all the models in terms of architec-
ture, the same set of convolutional filter sizes is maintained. Since small 
lesion segmentation masks contain an overwhelming number of nega-
tive class pixels, F1 score was used as an accuracy metrics for comparing 
the proposed model with the aforementioned models. In Table 2, we 
compared the proposed attention UW-Net for collarbone, trachea, heart 
and lung segmentation on the average, maximum, minimum and stan-
dard deviation (SD) of F1 metrics with respect to other variations of 
U-Net models. 

As shown in Table 2, the attention UW-Net outperforms all the 
existing models. U-Net and its variations, on the other hand, fail to 
produce accurate outputs for small lesions. The Trans U-Net, which uses 
transformers as the backbone, fails to give an output mask for smaller 
regions of interest, such as the collarbone and trachea. Swin U-Net, on 
the other hand, outperforms U-Net and its ResNet backbone variant for 
collarbone and heart segmentation but falls behind, although ever so 
slightly in lungs and trachea segmentation. By comparing the results on 
lungs, heart, trachea and collar bone segmentation, the UW-Net achieves 
a performance gain of 3.2%, 2.9%, 7.1% and 11.8% and a rise in 

Fig. 5. Comparison of the predicted masks obtained from a 2D CXR image (A) as an input with respect to the ground truth masks (B) between the proposed Attention 
UW-Net (C), UW-Net (D), Attention U-Net (E), U-Net with ResNet backbone (F), Swin U-Net (G), U-Net (H) and Trans U-Net (I) (from left to right). 
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performance by 1.9%, 3.9%, 0.9% and 5.0% over U-Net, Attention U- 
Net, Swin U-Net and U-Net with ResNet backbone on the trachea and 
heart segmentation respectively in terms of F1 score. However, the 
improvement vanishes for lung and collarbone segmentations. This is 
because the shape, size and orientation of the collarbone vary from 
patient to patient, and there is a limited contrast with the neighbouring 
pixels (cells). The UW-Net also fails to effectively leverage global 
structural information to resolve the local details, which leads to the 
deterioration in the performance of lung segmentation. This drawback is 
solved by the usage of attention layers in the proposed model. The 
attention mode of the UW-Net outperforms significantly in the collar- 
bone segmentation with an average improvement of 43.3%, 21.4%, 
19.0% and 5.4% over U-Net, U-Net with ResNet backbone, Swin U-Net 
and attention U-Net with respect to the F1 score. The attention UW-net 
outperforms the U-Net by 1.7%, the Swin U-Net by 2.6% and the 
attention U-Net by 4.2% but falls behind the U-Net with ResNet back-
bone in lung segmentation by 1.4%. However, the latter has more layers 
in comparison to the attention UW-Net. Therefore, more parameters and 
more time are required for training. 

The boxplots represent the distribution of F1 scores for the compared 
architectures are shown in Fig. 6. The median and mean of the distri-
bution of F1 scores for each corresponding method are represented by 
orange and green lines, respectively. The box represents the range of the 
central 50% of the F1-scores and gives an idea of the data distribution. 
The whiskers or the lines extending from the boxes represent the range 
of the remaining data points. The black dots past the whiskers represent 
the outliers. 

From Fig. 6, it is clear that the proposed attention UW-Net leads all 
the existing architectures that are compared in this paper. The proposed 
attention UW-Net architecture not only has less deviation (spread) in the 
F1-score but also has a higher mean and median value. The number of 
outliers and the distance of the outliers from the lower whisker are lower 
than the compared architectures. The proposed attention UW-Net has 
the bulk of scores in the range of 92–95 for lung segmentation, 77 to 86 
for heart segmentation, 76 to 82 for trachea and 74 to 81 for collarbone 

segmentation. The proposed architecture also has a lesser number of 
outliers in comparison to the other architectures. From the graphical 
representation of the F1 scores across the boxplot in Fig. 6, attention 
UW-Net outperforms other U-Net variations in all aspects. 

4.2. Comparison with other models 

The model has been compared with four segmentation models apart 
from the U-Net architecture to further our claim of the proposed 
attention UW-Net is the best among the other prevalent segmentation 
models. The results are tabulated in Table 3 and visualized as predicted 
segmentation masks in Fig. 7. These models include LinkNet [41], FPN 
[42], PSP Net [43], region growth algorithm [44], RU-Net [45] and 2ST- 
UNet [46]. 

The proposed attention UW-Net provides the best output segmen-
tation by a long shot, as seen in Fig. 7(C). The predicted segmentation 
masks of lungs for LinkNet in Fig. 7(D), though lacks in showcasing the 
details, come close to the lung segmented mask of the proposed model. 
The failure to give proper segmentation masks for smaller regions is 
showcased in the heart and trachea segmentation in Fig. 7(D). The tra-
chea masks fail to show the splitting into bronchi, and the shape of the 
segmented heart doesn’t match with the ground truth (Fig. 7(B)). Since 
the region growing algorithms depend on the input seed, four different 
input seeds were allocated in correspondence with the supposed position 
of the located organs. Its inability to pin-point the precise locations and 
features is evident in Fig. 7(E). As is evident, the region-growing algo-
rithm is better off giving generalized output rather than a specified 
output mask as required in certain cases. RU-Net and 2ST UNet perform 
a good job in generating lung and trachea masks, as is showcased in 
Fig. 7(F). However, the predicted heart mask is not showing a proper 
shape. The predicted collarbone mask is also not showcasing the proper 
position in terms of the ground truth mask, as is shown in Fig. 7(G). 
Other segmentation models, such as COVID-Net [16] were unable to 
give any output mask due to the absence of pre-processing steps which 
were incorporated while training the model. COVIDX-Net [20], which is 
designed for classification tasks, was also unable to give any significant 
results for the mentioned training data. As PSP Net and FPN were unable 
to generate any segmentation masks, there were no true positive pixels. 
Therefore, their entries were not included in Table 3. As a result, Fig. 4 is 
limited to 5 columns only. Their inability might be due to the lack of 
training data and the size of the convolutional filters being too large to 
capture receptive features essential for the pixel-level classification of 
input CXR images. 

The proposed attention UW-Net outperforms all the other segmen-
tation models in different segmentation tasks and performance is shown 
in Table 3. FPN and PSP Net fail to generate a segmentation mask for the 
given segmentation task due to the class imbalance of segmented masks 
for small lesions such as collarbone, heart and trachea segmentation. 
The small region of interest results in a huge difference between the true- 
positive and false-positive pixels. The automatic segmentation method 
implemented by using the region growth algorithm also fares bad in the 
segmentation tasks at hand. However, from Table 2, proposed model in 
lung segmentation task, leading the attention UW-Net by an average F1- 
score of 1.5%. Apart from this, the proposed model has a significant 
upper hand over the other compared segmentation models. The pro-
posed model leads the LinkNet by an average F1 score of 4.4%, 5.3% and 
4.7%, the RU-Net by an average F1 score of 3.4%, 1.5%, 3.9% and 2.6% 
and the 2ST-UNet by an average F1 score of 0.8%, 2.3%, 4.4% and 7.0% 
for heart, trachea and collarbone segmentation (see Table 3). The con-
sistency of the proposed model in generating segmentation masks irre-
spective of the size and shape of the region of interest is clearly 
established from the experiment performed with respect to the state-of- 
the-art RGB models as well as segmentation models developed specif-
ically for CXR images as is showcased in Fig. 7 and Table 3. 

Table 2 
The F1 scores of the attention UW-Net, base U-Net and its other variations in 
segmentation of lungs, heart, trachea and collarbone.  

Model  Lungs Heart Trachea Collarbone 

U-net with 
ResNet 
backbone 

Avg 
±SD 

94.6 ±
10.8 

72.7 ±
10.4 

67.2 ± 9.2 56.2 ±
16.1 

Max - 
Min 

94.6–19.9 91.6–47.0 84.3–48.8 79.3–24.7 

U-Net Avg 
±SD 

94.1 ± 1.7 77.0 ± 9.0 69.0 ±
14.6 

34.2 ±
19.9 

Max- 
Min 

96.4–88.1 89.3–49.5 85.3–7.2 71.1–0.0 

UW-Net Avg 
±SD 

93.9 ± 4.1 68.9 ±
13.6 

79.0 ± 6.4 54.0 ±
15.9 

Max- 
Min 

96.8–69.1 90.6–35.1 87.8–65.8 79.4–26.5 

Attention U- 
Net 

Avg 
±SD 

93.4 ± 6.4 74.6 ±
10.8 

76.8 ± 6.8 72.2 ± 7.4 

Max- 
Min 

97.2–54.4 92.8–37.4 84.8–62.2 83.1–57.5 

Proposed 
Attention 
UW-Net 

Avg  
±SD 

95.7 ± 
1.3 

80.9 ± 
7.3 

81.0 ± 
5.2 

77.5 ± 6.3 

Max- 
Min 

97.8–88.7 91.6–58.3 89.9–70.8 85.6–62.4 

Swin U-Net Avg 
±SD 

93.7 ± 3.2 77.7 ± 8.2 71.9 ± 7.3 58.5 ±
12.0 

Max- 
Min 

97.2–85.6 92.6–58.1 82.2–54.1 74.3–32.8 

Trans U-Net Avg 
±SD 

79.2 ±
11.6 

78.2 ±
13.4 

9.2 ± 2.4 21.1 ±
14.5 

Max- 
Min 

93.9–41.9 19.5–13.4 10.0–0.1 47.0–0.0 

* Avg = Average (Mean values), SD = Standard Deviation, Max = Maximum, 
and Min = Minimum F1. 
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4.3. Discussion 

The proposed model has showcased a commendable performance in 
terms of small and large region segmentation and annotation task 

without using any pre- or post-processing techniques as shown in Ta-
bles 2 and 3 The limited training data to obtain these results without 
using any pre-trained weights should also be kept into consideration. 
Since the proposed model can effectively annotate large as well as small 
regions of interests, this model has a wide range of use cases in medical 
vision especially in predicting and precisely annotating fractures in 
bones, detecting anomalies in any 2D scan images as inputs. A 3D 
version of this model can also be implemented for the detection of tu-
mors in breast and brain MRI scans. 

4.4. Potential limitations 

The proposed attention UW-Net outperforms the aforementioned 
models for organ segmentation and annotations for small (collarbone, 
trachea and heart) and large (lungs) organs. However, the mentioned 
model has certain limitations in terms of lung field annotations. The 
proposed model adds extraneous regions of colonic and gastric air pre-
sent below the diaphragm (as shown in Fig. 8(C)) as lung masks in some 
cases. This may be due to the addition of an extra skip connection which 
connects the intermediate layer with the decoder layer. This results in an 
additional positional embedding of the feature vector for the first 
decoder layer, which results in capturing extraneous noises surrounding 
the regions of interest whose pixel correlation is almost the same as the 
pixels of the regions which are to be segmented. However, the proposed 
model shows the lesser area for the misclassified region, unlike other 
good segmentation models such as Attention U-Net (shown in Fig. 8(D)) 
and LinkNet (shown in Fig. 8(E)). 

The proposed attention UW-Net includes the adjacent regions in the 

Fig. 6. A series of boxplots representing the distribution of F1 scores on the four different segmentation tasks, namely lungs, heart, trachea and collarbone.  

Table 3 
F1 scores comparison of attention UW-Net with other segmentation models.  

Model Format Lungs Heart Trachea Collarbone 

LinkNet Avg 
±SD 

94.1 ± 1.1 76.5 ± 9.8 75.7 ± 6.8 72.9 ± 8.9 

Max - 
Min 

97.4–92.1 93.9–48.1 87.4–62.1 86.1–44.9 

Region 
Growing 
Algorithm 

Avg 
±SD 

39.6 ± 5.5 1.2 ± 10.4 13.7 ± 2.3 6.4 ± 3.9 

Max- 
Min 

47.3–28.8 35.0–0 31.5–0.1 27.7–0.1 

Proposed 
Attention 
UW-Net 

Avg  
±SD 

95.7 ± 
1.3 

80.9 ± 
7.3 

81.0 ± 
5.2 

77.5 ± 6.3 

Max- 
Min 

97.8–88.7 91.6–58.3 89.9–70.8 85.6–62.4 

RU-Net Avg 
±SD 

92.3 ± 4.8 79.4 ± 7.0 77.1 ± 7.7 74.9 ± 8.2 

Max - 
Min 

97.1–74.6 90.3–53.1 90.3–56.6 85.5–53.8 

2ST-UNet Avg 
±SD 

94.9 ± 2.2 78.6 ± 7.9 76.6 ± 8.4 70.5 ±
12.8 

Max - 
Min 

97.5–87.6 90.1–54.9 89.1–52.6 86.5–14.7 

* Avg = Average (Mean values), SD = Standard Deviation, Max = Maximum, 
and Min = Minimum F1. 
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predicted lung field masks, as showcased in Fig. 8. However, the 
extraneous region included in the predicted mask is less as compared to 
the predicted mask of Attention U-Net (as shown in Fig. 8(D)). The 
LinkNet not only fails to give an accurate segmentation mask for the 
lungs but also adds a greater number of false positive pixels in the 
predicted lung mask. Post-processing techniques such as denoising and 
erosion can be considered as a possible solutions to this limitation. 
However, since the paper focuses on introducing a novel model with 
little to no pre- or post-processing techniques, the applicability of the 
mentioned techniques has not been covered in this paper. 

5. Ablation study 

The ablation study is performed in order to demonstrate the effec-
tiveness of the proposed attention UW-Net architecture based on (i) 
duplicating the novel intermediate layer and stacking them one level on 
top of another, and (ii) stacking the replicated intermediate layer side by 
side as an extension of second last decoder layer in the decoder path as 
shown in Fig. 8. The mentioned models are trained and tested on the 
same dataset with the same system configuration. The results of the 

experiment are tabulated in Tables 3 and 4. The study is conducted to 
prove that stacking similar intermediate layer level-wise or side-ways 
does not, in any way, improve the segmentation accuracy of the pro-
posed model. The level-wise addition of the novel intermediate layer on 
the proposed UW-Net architecture is shown in Fig. 9 (Level-wise). The 
stacking of the intermediate layer over the UW-Net is shown in Fig. 9 
(Stack-wise). 

The F1 score of the level-wise and stack-wise addition of the inter-
mediate layer, respectively, is shown in Table 4. The “Model – 1” layer is 
the attention U-Net architecture. The model with +1, +2 and +3-layers 
refers to the UW-Net with 2, 3 and 4 intermediate layers, respectively, 
stacked in the previously mentioned orientation. The proposed UW-Net 
model is the most consistent among the modified models that are 
compared in Tables 3 and 4 The proposed UW-Net model significantly 
outperforms the models mentioned in the ablation study for small lesion 
segmentation such as heart, trachea and collarbone. However, the 
average F1 scores are almost the same for large organ segmentation, 
precisely lung segmentation. In terms of the level-wise addition of in-
termediate layers, the proposed model leads the other models by an 
average F1 score of 5.4, 4.9, 5.1 and 1.1 for collarbone segmentation, by 

Fig. 7. Comparison on the predicted masks obtained from a 2D CXR image (A) as a input with respect to the ground truth masks (B) between the proposed attention 
UW-Net (C) with other segmentation models namely LinkNet (D), the region growing algorithm (E), RU-Net (F) and 2ST-UNet (G) (from left to right). 

Fig. 8. Comparison on CXR image (A) in terms of predicted lung field segmentation masks produced by the proposed model (C), Attention U-Net (D) and LinkNet (E) 
with respect to the ground truth mask (B). The extraneous regions denoting the colonic and gastric air are marked as a yellow circle (showcased in sub-figure A, C, D 
and E). 
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4.8, 3.8, 11.3 and 2.4 for trachea segmentation and by 5.3, 1.4, 1.1 and 
1.5 for heart segmentation in terms of level-wise increment of the in-
termediate layer. 

The proposed model is the best performing variation in terms of the 
intermediate layer, though the other models have almost similar per-
formance. In terms of the stack-wise addition of intermediate layers, the 
proposed model leads the other models by an average F1 score of 5.4, 
2.7, 0.6 and 1.9 for collarbone segmentation, by 4.2, 3.6, 3.7 and 3.8 for 
trachea segmentation and by 6.3, 0.2, 0.9 and 0.1 for heart segmentation 
in terms of level-wise increment of the intermediate layer. However, the 
model with four intermediate layers, i.e., the intermediate layer in be-
tween the four skip connections, has the highest average F1 score, 
outperforming the proposed model by a mere 0.1 in F1-score. The 
increased number of skip connections, intermediate and attention layers 
should be taken into consideration for the increase in average F1-score 
by a mere 0.1. The comparison in terms of F1-score as evaluation has 

established the fact that the proposed UW-Net is the best possible 
method in terms of addition or subtraction of the novel intermediate 
layer. 

The ablation study shows how well the proposed attention UW-Net 
performs over small and large region segmentation tasks, not only in 
terms of average F1-score but also the standard deviation. The deviation 
from the mean score is represented as black vertical lines on the top of 
each bar in an individual unstacked plot. The consistent performance is 
reflected by the small vertical lines on top of the bars representing the 
attention UW-Net model. The variation in F1 scores for the proposed 
model is significantly less in comparison to other models compared in 
the study. 

6. Conclusion 

In this paper, we have presented a novel attention UW-Net to address 

Table 4 
The F1 scores of the ablation study on the level-wise as well as stack-wise duplication of the intermediate layer.  

Type Model  Lungs Heart Trachea Collarbone 

Level-wise Model – 1 Layer Avg ±SD 93.4 ± 6.4 74.6 ± 10.8 76.8 ± 6.8 72.2 ± 7.3 
Max - Min 97.2–54.4 92.8–37.4 84.8–62.2 83.1–57.4 

Proposed Model Avg ±SD 95.7 ± 1.4 80.9 ± 7.3 81.0 ± 5.2 77.6 ± 6.3 
Max-Min 97.8–88.7 91.6–58.3 89.9–70.8 85.7–62.4 

Model +1 Layer Avg ±SD 95.7 ± 2.0 79.5 ± 7.6 76.2 ± 8.4 72.5 ± 7.9 
Max-Min 98.1–87.1 90.2–54.8 89.8–70.8 85.4–41.1 

Model +2 Layers Avg ±SD 95.4 ± 2.2 79.8 ± 6.8 69.7 ± 9.6 74.1 ± 7.9 
Max-Min 97.7–87.8 91.1–57.8 87.0–47.4 85.8–53.1 

Model +3 Layers Avg ±SD 95.6 ± 1.8 79.4 ± 6.9 78.6 ± 7.7 76.5 ± 6.8 
Max-Min 97.8–90.8 88.8–57.1 91.9–54.3 85.8–57.4 

Stack-wise Model – 1 Layer Avg ±SD 93.4 ± 6.4 74.6 ± 10.8 76.8 ± 6.8 72.2 ± 7.3 
Max-Min 97.2–54.4 92.8–37.4 84.8–62.2 83.1–57.4 

Proposed Model Avg ±SD 95.7 ± 1.4 80.9 ± 7.3 81.0 ± 5.2 77.6 ± 6.3 
Max-Min 97.8–88.7 91.6–58.3 89.9–70.8 85.7–62.4 

Model +1 Layer Avg ±SD 95.6 ± 1.7 80.7 ± 6.7 77.4 ± 6.8 74.9 ± 7.9 
Max-Min 97.8–89.9 92.6–62.1 89.7–62.1 87.7–49.9 

Model +2 Layers Avg ±SD 95.6 ± 1.8 80.0 ± 7.5 77.3 ± 7.7 77.0 ± 6.8 
Max-Min 97.7–89.6 92.9–62.4 90.4–54.8 86.0–58.3 

Model +3 Layers Avg ±SD 95.8 ± 1.4 80.8 ± 7.4 77.2 ± 7.1 75.7 ± 9.3 
Max-Min 97.8–91.7 93.8–61.6 89.2–52.4 88.9–45.5 

* Avg = Average (Mean values), SD = Standard Deviation, Max = Maximum value and Min = Minimum F1. 

Fig. 9. The feature vectors of the different ablation techniques used: Level-wise (A1-A3) and Stack-wise (B1–B3). As we move from left to right, the number of 
intermediate layers added to the UW-Net increases from once in (1) to thrice in (3). 
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the need for a more generalized model that not only deals with small 
lesion segmentation but also considers the anatomical features and the 
positional relationship between the lung field and heart. The experi-
mental results show that the novel attention UW-net architecture, along 
with the modified attention gates, is highly efficient for the identifica-
tion and segmentation of small lesions such as collarbone and trachea as 
well as large region segmentation such as lungs. Furthermore, the 
attention UW-Net outperforms not only the existing U-Net models and 
their variations but also other existing state-of-the-art segmentation 
models with respect to both consistency and accuracy obtained via ac-
curacy metrics. The results of the ablation study prove that the model is 
the best variation in terms of the position and stacking of intermediate 
layers. 

The future work will be to incorporate computational intelligent 
algorithms, especially swarm-based algorithms such as MBO, EWA and 
EHA, into the proposed model. Combating the problem of generating 
false positive pixels in certain specific cases (such as lung field annota-
tion) as mentioned in the potential limitations section would be another 
aspect which would be focused on in future. 

Source code 

The complete source code of this work is available in GitHub re-
pository at: https://github.com/Dynamo13/Attention_UWNet. 
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