The location of Banganga Tank and Walkeshwar is at the foot of the western face of Malabar Hill, on breaking point of the Arabian Sea. The stone paved Jabreshwar Gali is one of two alleys leading to Banganga Tank from Walkeshwar Road running along the ridge of Malabar Hill. The most prominent temple in Jabreshwar gali is the eponymous Jabreshwar Temple, built in the 1840s by Nathuram Ramdas, father of a leading Bombay merchant, Sir Mangaldas Nathubhai.
The Jabreshwar Mahadev Temple is built in the North Indian Nagara style with an elegant shikhara rising above the garbagriha. The shikhara is embellished with carvings of musicians, lions, monkeys and elephants. The exterior wall of the sabhamandap has an arched makara torana flanked by celestial dancers on pillar capitals. These winged female figures are draped in the local Koli way of wearing the saree.
Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the diagnosis of brain tumors in their early stages. However, manual brain tumor diagnosis is difficult, time-consuming, and prone to error. Based on the problem highlighted, an automated brain tumor detection system is mandatory to identify the tumor in its initial stages. This research presents an efficient deep learningbased system for the classification of brain tumors from brain MRI using the deep convolutional network and salp swarm algorithm. All experiments are performed using the publicly available brain tumor Kaggle dataset. To enhance the classification rate, preprocessing and data augmentation such as skewed data ideas are devised. In addition, AlexNet and VGG19 are leveraged to perform specific functionality. Finally, all features merged into a single feature vector for brain tumor classification. Some of the extracted features found insignificant towards effective classification. Hence, we employed an efficient feature selection technique named slap swarm to find the most discriminative features to attain best tumor classification rate. Finally, several SVM kernels are merged for the final classification and 99.1% accuracy is achieved by selecting 4111 optimal features from 8192.
Identification and recognition of number plate is very difficult from low resolution images due to poor boundary and contrast. Our goal is to identify the digits from a low-quality number plate image correctly, but correct detection was exceedingly difficult in some cases due to the low-resolution image. Another goal of this paper was to upscale the image from a very low resolution to high resolution to recover helpful information to improve the accuracy of number plate detection and recognition. We have used Enhanced- Super-Resolution with Generative Adversarial Network (SRGAN). We modified native Dense Blocks of the Generative Adversarial Network with a Residual in Residual Dense Block model. In addition to Convolutional Neural Networks for thresholding. We also used a Rectified Linear Unit (ReLU) activation layer. The plate image is then used for segmentation using the OCR model for detection and recognizing the characters in the number plates. The Optical character recognition (OCR) model reaches an average accuracy of 84% for high resolution, whereas the accuracy is 4% - 7% for low resolution. The model’s accuracy increases with the resolution enhancement of the plate images. ESRGAN provides better enhancement of low-resolution images than SRGAN and Pro-SRGAN, which the OCR model validates. The accuracy significantly increased digit/alphabet detection in the number plate than the original low-resolution image when converted to a high-resolution image using ESRGAN.