Search Constraints
1 - 6 of 6
Number of results to display per page
Search Results
-
- Description:
- Architected cellular materials, such as lattice structures, offer potential for tunable mechanical properties for dynamic applications of energy absorption and impact mitigation. In this work, the static and dynamic behavior of polymeric lattice structures was investigated through experiments on octet-truss, Kelvin, and cubic topologies with relative densities around 8%. Dynamic testing was conducted via direct impact experiments (25–70 m/s) with high-speed imaging coupled with digital image correlation and a polycarbonate Hopkinson pressure bar. Mechanical properties such as elastic wave speed, deformation modes, failure properties, particle velocities, and stress histories were extracted from experimental results. At low impact velocities, a transient dynamic response was observed which was composed of a compaction front initiating at the impact surface and additional deformation bands whose characteristics matched low strain-rate behavior. For higher impact velocities, shock analysis was carried out using compaction wave velocity and Eulerian Rankine–Hugoniot jump conditions with parameters determined from full-field measurements.
- Keyword:
- Failure, Digital image correlation, Transient dynamic, Shock, Lattice structure, and Compaction
- Subject:
- Applied Science and Engineering
- Creator:
- Weeks, J. S. and Ravichandran, Guruswami
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- Springer Nature
- Location:
- Switzerland
- Language:
- English
- Date Uploaded:
- 21-03-2023
- Date Modified:
- 21-03-2023
- Date Created:
- 01-12-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.1007/s40870-022-00359-2
-
- Description:
- Architected cellular materials, such as lattice structures, offer potential for tunable mechanical properties for dynamic applications of energy absorption and impact mitigation. In this work, the static and dynamic behavior of polymeric lattice structures was investigated through experiments on octet-truss, Kelvin, and cubic topologies with relative densities around 8%. Dynamic testing was conducted via direct impact experiments (25–70 m/s) with high-speed imaging coupled with digital image correlation and a polycarbonate Hopkinson pressure bar. Mechanical properties such as elastic wave speed, deformation modes, failure properties, particle velocities, and stress histories were extracted from experimental results. At low impact velocities, a transient dynamic response was observed which was composed of a compaction front initiating at the impact surface and additional deformation bands whose characteristics matched low strain-rate behavior. For higher impact velocities, shock analysis was carried out using compaction wave velocity and Eulerian Rankine–Hugoniot jump conditions with parameters determined from full-field measurements.
- Keyword:
- Transient dynamic, Failure, Shock, Compaction, Lattice structure, and Digital image correlation
- Subject:
- Material Science, Chemistry, and Chemical Engineering
- Creator:
- Weeks, J. S. and Ravichandran, G.
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- Springer Nature
- Location:
- Switzerland
- Language:
- English
- Date Uploaded:
- 11-02-2023
- Date Modified:
- 16-02-2023
- Date Created:
- 01-12-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.1007/s40870-022-00359-2
-
- Keyword:
- Artificial intelligence, Explainable AI, Deep learning, and Medical image
- Creator:
- Tanushree Meena, Debojyoti Pal , and Sudipta Roy
- Owner:
- nancy1.singh@jioinstitute.edu.in
- Date Uploaded:
- 16-04-2024
- Date Modified:
- 16-04-2024
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
-
- Description:
- Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the diagnosis of brain tumors in their early stages. However, manual brain tumor diagnosis is difficult, time-consuming, and prone to error. Based on the problem highlighted, an automated brain tumor detection system is mandatory to identify the tumor in its initial stages. This research presents an efficient deep learningbased system for the classification of brain tumors from brain MRI using the deep convolutional network and salp swarm algorithm. All experiments are performed using the publicly available brain tumor Kaggle dataset. To enhance the classification rate, preprocessing and data augmentation such as skewed data ideas are devised. In addition, AlexNet and VGG19 are leveraged to perform specific functionality. Finally, all features merged into a single feature vector for brain tumor classification. Some of the extracted features found insignificant towards effective classification. Hence, we employed an efficient feature selection technique named slap swarm to find the most discriminative features to attain best tumor classification rate. Finally, several SVM kernels are merged for the final classification and 99.1% accuracy is achieved by selecting 4111 optimal features from 8192.
- Keyword:
- MRI, Health risks, Public health, Brain tumor, Deep learning, and Transfer learning
- Subject:
- Artificial Intelligence and Data Science
- Creator:
- Fayyaz, Abdul Muiz , Rehman, Amjad , Alyami, Jaber , Alkhurim, Alhassan , Almutairi, Fahad , Saba, Tanzila , and Roy, Sudipta
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- Springer Nature
- Location:
- Switzerland
- Language:
- English
- Date Uploaded:
- 11-02-2023
- Date Modified:
- 16-02-2023
- Date Created:
- 01-01-2023
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.1007/s12559-022-10096-2
-
- Description:
- The global healthcare sector continues to grow rapidly and is reflected as one of the fastestgrowing sectors in the fourth industrial revolution (4.0). The majority of the healthcare industry still uses labor-intensive, time-consuming, and error-prone traditional, manual, and manpower-based methods. This review addresses the current paradigm, the potential for new scientific discoveries, the technological state of preparation, the potential for supervised machine learning (SML) prospects in various healthcare sectors, and ethical issues. The effectiveness and potential for innovation of disease diagnosis, personalized medicine, clinical trials, non-invasive image analysis, drug discovery, patient care services, remote patient monitoring, hospital data, and nanotechnology in various learning-based automation in healthcare along with the requirement for explainable artificial intelligence (AI) in healthcare are evaluated. In order to understand the potential architecture of non-invasive treatment, a thorough study of medical imaging analysis from a technical point of view is presented. This study also represents new thinking and developments that will push the boundaries and increase the opportunity for healthcare through AI and SML in the near future. Nowadays, SML-based applications require a lot of data quality awareness as healthcare is data-heavy, and knowledge management is paramount. Nowadays, SML in biomedical and healthcare developments needs skills, quality data consciousness for data-intensive study, and a knowledge-centric health management system. As a result, the merits, demerits, and precautions need to take ethics and the other effects of AI and SML into consideration. The overall insight in this paper will help researchers in academia and industry to understand and address the future research that needs to be discussed on SML in the healthcare and biomedical sectors.
- Keyword:
- Healthcare, Precision Medicine, Artificial Intelligence, Computer Vision, Deep Learning, Medical Imaging, XAI, and Supervised Learning
- Subject:
- Artificial Intelligence and Data Science
- Creator:
- Roy, Sudipta , Lim, Se-Jung , and Meena, Tanushree
- Contributor:
- Jio Institute, CVMI-Computer Vision in Medical Imaging Project
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- MDPI
- Location:
- Switzerland and India
- Language:
- English
- Date Uploaded:
- 10-02-2023
- Date Modified:
- 16-02-2023
- Date Created:
- 01-10-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.3390/diagnostics12102549
-
6. Bone Fracture Detection Using Deep Supervised Learning from Radiological Images: A Paradigm Shift
- Description:
- Bone diseases are common and can result in various musculoskeletal conditions (MC). An estimated 1.71 billion patients suffer from musculoskeletal problems worldwide. Apart from musculoskeletal fractures, femoral neck injuries, knee osteoarthritis, and fractures are very common bone diseases, and the rate is expected to double in the next 30 years. Therefore, proper and timely diagnosis and treatment of a fractured patient are crucial. Contrastingly, missed fractures are a common prognosis failure in accidents and emergencies. This causes complications and delays in patients’ treatment and care. These days, artificial intelligence (AI) and, more specifically, deep learning (DL) are receiving significant attention to assist radiologists in bone fracture detection. DL can be widely used in medical image analysis. Some studies in traumatology and orthopaedics have shown the use and potential of DL in diagnosing fractures and diseases from radiographs. In this systematic review, we provide an overview of the use of DL in bone imaging to help radiologists to detect various abnormalities, particularly fractures. We have also discussed the challenges and problems faced in the DL-based method, and the future of DL in bone imaging.
- Keyword:
- Deep Learning, Fractures, Bone Imaging, Artificial Intelligence, Radiology, and Computer Vision
- Subject:
- Data Science and Artificial Intelligence
- Creator:
- Roy, Sudipta and Meena, Tanushree
- Contributor:
- Jio Institute CVMI-Computer Vision in Medical Imaging Project
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- MDPI
- Location:
- Switzerland
- Language:
- English
- Date Uploaded:
- 10-02-2023
- Date Modified:
- 16-02-2023
- Date Created:
- 01-10-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.3390/diagnostics12102420