Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the diagnosis of brain tumors in their early stages. However, manual brain tumor diagnosis is difficult, time-consuming, and prone to error. Based on the problem highlighted, an automated brain tumor detection system is mandatory to identify the tumor in its initial stages. This research presents an efficient deep learningbased system for the classification of brain tumors from brain MRI using the deep convolutional network and salp swarm algorithm. All experiments are performed using the publicly available brain tumor Kaggle dataset. To enhance the classification rate, preprocessing and data augmentation such as skewed data ideas are devised. In addition, AlexNet and VGG19 are leveraged to perform specific functionality. Finally, all features merged into a single feature vector for brain tumor classification. Some of the extracted features found insignificant towards effective classification. Hence, we employed an efficient feature selection technique named slap swarm to find the most discriminative features to attain best tumor classification rate. Finally, several SVM kernels are merged for the final classification and 99.1% accuracy is achieved by selecting 4111 optimal features from 8192.
The global healthcare sector continues to grow rapidly and is reflected as one of the fastestgrowing sectors in the fourth industrial revolution (4.0). The majority of the healthcare industry still uses labor-intensive, time-consuming, and error-prone traditional, manual, and manpower-based methods. This review addresses the current paradigm, the potential for new scientific discoveries, the technological state of preparation, the potential for supervised machine learning (SML) prospects in various healthcare sectors, and ethical issues. The effectiveness and potential for innovation of disease diagnosis, personalized medicine, clinical trials, non-invasive image analysis, drug discovery, patient care services, remote patient monitoring, hospital data, and nanotechnology in various learning-based automation in healthcare along with the requirement for explainable artificial intelligence (AI) in healthcare are evaluated. In order to understand the potential architecture of non-invasive treatment, a thorough study of medical imaging analysis from a technical point of view is presented. This study also represents new thinking and developments that will push the boundaries and increase the opportunity for healthcare through AI and SML in the near future. Nowadays, SML-based applications require a lot of data quality awareness as healthcare is data-heavy, and knowledge management is paramount. Nowadays, SML in biomedical and healthcare developments needs skills, quality data consciousness for data-intensive study, and a knowledge-centric health management system. As a result, the merits, demerits, and precautions need to take ethics and the other effects of AI and SML into consideration. The overall insight in this paper will help researchers in academia and industry to understand and address the future research that needs to be discussed on SML in the healthcare and biomedical sectors.