Search Constraints
Filtering by:
Creator
Ravichandran, Guruswami
Remove constraint Creator: Ravichandran, Guruswami
Collection
Jio Institute Research Publication Archive
Remove constraint Collection: Jio Institute Research Publication Archive
1 - 2 of 2
Number of results to display per page
Search Results
-
- Description:
- Architected cellular materials, such as lattice structures, offer potential for tunable mechanical properties for dynamic applications of energy absorption and impact mitigation. In this work, the static and dynamic behavior of polymeric lattice structures was investigated through experiments on octet-truss, Kelvin, and cubic topologies with relative densities around 8%. Dynamic testing was conducted via direct impact experiments (25–70 m/s) with high-speed imaging coupled with digital image correlation and a polycarbonate Hopkinson pressure bar. Mechanical properties such as elastic wave speed, deformation modes, failure properties, particle velocities, and stress histories were extracted from experimental results. At low impact velocities, a transient dynamic response was observed which was composed of a compaction front initiating at the impact surface and additional deformation bands whose characteristics matched low strain-rate behavior. For higher impact velocities, shock analysis was carried out using compaction wave velocity and Eulerian Rankine–Hugoniot jump conditions with parameters determined from full-field measurements.
- Keyword:
- Failure, Digital image correlation, Transient dynamic, Shock, Lattice structure, and Compaction
- Subject:
- Applied Science and Engineering
- Creator:
- Weeks, J. S. and Ravichandran, Guruswami
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- Springer Nature
- Location:
- Switzerland
- Language:
- English
- Date Uploaded:
- 21-03-2023
- Date Modified:
- 21-03-2023
- Date Created:
- 01-12-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.1007/s40870-022-00359-2
-
- Description:
- Multiscale experiments in heterogeneous materials and the knowledge of their physics under shock compression are limited. This study examines the multiscale shock response of particulate composites comprised of soda-lime glass particles in a PMMA matrix using full-field high speed digital image correlation (DIC) for the first time. Normal plate impact experiments, and complementary numerical simulations, are conducted at stresses ranging from to elucidate the mesoscale mechanisms responsible for the distinct shock structure observed in particulate composites. The particle velocity from the macroscopic measurement at continuum scale shows a relatively smooth velocity profile, with shock thickness decreasing with an increase in shock stress, and the composite exhibits strain rate scaling as the second power of the shock stress. In contrast, the mesoscopic response was highly heterogeneous, which led to a rough shock front and the formation of a train of weak shocks traveling at different velocities. Additionally, the normal shock was seen to diffuse the momentum in the transverse direction, affecting the shock rise and the rounding-off observed at the continuum scale measurements. The numerical simulations indicate that the reflections at the interfaces, wave scattering, and interference of these reflected waves are the primary mechanisms for the observed rough shock fronts.
- Keyword:
- Shock structure, Shock compression, Composite, Plate impact, Digital image correlation, and Meso-scale
- Subject:
- Engineering and Applied Science
- Creator:
- Lawlor, Barry , Ravindran, Suraj , Gandhi, Vatsa , and Ravichandran, Guruswami
- Contributor:
- Jio Institute
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- Elsevier
- Location:
- United States
- Language:
- English
- Date Uploaded:
- 21-03-2023
- Date Modified:
- 21-03-2023
- Date Created:
- 01-02-2023
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.1016/j.jmps.2023.105239