Busca
1 - 2 de 2
Número de resultados para mostrar por página
Resultados da Busca
-
- Descrição:
- Internet of Things (IoT), a strong integration of radio frequency identifier (RFID), wireless devices, and sensors, has provided a difficult yet strong chance to shape existing systems into intelligent ones. Many new applications have been created in the last few years. As many as a million objects are anticipated to be linked together to form a network that can infer meaningful conclusions based on raw data. This means any IoT system is heterogeneous when it comes to the types of devices that are used in the system and how they communicate with each other. In most cases, an IoT network can be described as a layered network, with multiple tiers stacked on top of each other. IoT network performance improvement typically focuses on a single layer. As a result, effectiveness in one layer may rise while that of another may fall. Ultimately, the achievement issue must be addressed by considering improvements in all layers of an IoT network, or at the very least, by considering contiguous hierarchical levels. Using a parallel and clustered architecture in the device layer, this paper examines how to improve the performance of an IoT network’s controller layer. A particular clustered architecture at the device level has been shown to increase the performance of an IoT network by 16% percent. Using a clustered architecture at the device layer in conjunction with a parallel architecture at the controller layer boosts performance by 24% overall.
- Palavra-chave:
- Layered Networking, Parallel Architectures, Device Level Clustering, Internet of Things, Topology Binding, Performance Optimization, and Radio-frequency Identification
- Sujeito:
- Artificial Intelligence and Data Science
- O Criador:
- Singh, Ninni , Roy, Sudipta , Saad, Ismail , Rahebi, Javad , Farzamnia, Ali , Gunjan, Vinit Kumar , Davanam, Ganesh , and Kallam, Suresh
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Editor:
- MDPI
- Localização:
- Switzerland
- Língua:
- English
- Data carregada:
- 11-02-2023
- Data modificada:
- 16-02-2023
- Data Criada:
- 01-11-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identificador:
- 10.3390/en15228738
-
- Descrição:
- Purpose For radiologists, identifying and assessing thelung nodules of cancerous form from CT scans is a difficult and laborious task. As a result, early lung growing prediction is required for the investigation technique, and hence it increases the chances of a successful treatment. To ease this problem, computer-aided diagnostic (CAD) solutions have been deployed. The main purpose of the work is to detect the nodules are malignant or not and to provide the results with better accuracy. Methods A neural network model that incorporates a feedback loop is the recurrent neural network. Evolutionary algorithms such as the Grey Wolf Optimization Algorithm and Recurrent Neural Network (RNN) Techniques are investigated utilising the Matlab Tool in this work. Statistical attributes are also produced and compared with other RNN with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)combinations for study. Results The proposed method produced very high accuracy, sensitivity, specificity, and precision and compared with other state of art methods. Because of its simplicity and possible global search capabilities, evolutionary algorithms have shown tremendous promise in the area of feature selection in the latest years. Conclusion The proposed techniques have demonstrated outstanding outcomes in various disciplines, outperforming classical methods. Early detection of lung nodules will aid in determining whether the nodules will become malignant or not.
- Palavra-chave:
- Optimization, Lung Cancer, Recurrent Neural Network, and CT images
- Sujeito:
- Data Science and Artificial Intelligence
- O Criador:
- Roy, Sudipta, Gunjan, Vinit Kumar , Shaik, Fahimudin, and Singh, Ninni
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Editor:
- Springer Nature
- Localização:
- Cham and Switzerland
- Língua:
- English
- Data carregada:
- 10-02-2023
- Data modificada:
- 16-02-2023
- Data Criada:
- 01-11-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identificador:
- 10.1007/s12553-022-00700-8