Busca
Filtragem por:
Editor
Springer Nature
Remover Editor: Springer Nature
Sujeito
Artificial Intelligence
Remover Sujeito: Artificial Intelligence
1 - 3 de 3
Número de resultados para mostrar por página
Resultados da Busca
-
- Descrição:
- Early diagnosis of brain tumors is crucial for treatment planning and increasing the survival rates of infected patients. In fact, brain tumors exist in a range of different forms, sizes, and features, as well as treatment choices. One of the essential roles of neurologists and radiologists is the diagnosis of brain tumors in their early stages. However, manual brain tumor diagnosis is difficult, time-consuming, and prone to error. Based on the problem highlighted, an automated brain tumor detection system is mandatory to identify the tumor in its initial stages. This research presents an efficient deep learningbased system for the classification of brain tumors from brain MRI using the deep convolutional network and salp swarm algorithm. All experiments are performed using the publicly available brain tumor Kaggle dataset. To enhance the classification rate, preprocessing and data augmentation such as skewed data ideas are devised. In addition, AlexNet and VGG19 are leveraged to perform specific functionality. Finally, all features merged into a single feature vector for brain tumor classification. Some of the extracted features found insignificant towards effective classification. Hence, we employed an efficient feature selection technique named slap swarm to find the most discriminative features to attain best tumor classification rate. Finally, several SVM kernels are merged for the final classification and 99.1% accuracy is achieved by selecting 4111 optimal features from 8192.
- Palavra-chave:
- MRI, Health risks, Public health, Brain tumor, Deep learning, and Transfer learning
- Sujeito:
- Artificial Intelligence and Data Science
- O Criador:
- Fayyaz, Abdul Muiz , Rehman, Amjad , Alyami, Jaber , Alkhurim, Alhassan , Almutairi, Fahad , Saba, Tanzila , and Roy, Sudipta
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Editor:
- Springer Nature
- Localização:
- Switzerland
- Língua:
- English
- Data carregada:
- 11-02-2023
- Data modificada:
- 16-02-2023
- Data Criada:
- 01-01-2023
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identificador:
- 10.1007/s12559-022-10096-2
-
- Descrição:
- Identification and recognition of number plate is very difficult from low resolution images due to poor boundary and contrast. Our goal is to identify the digits from a low-quality number plate image correctly, but correct detection was exceedingly difficult in some cases due to the low-resolution image. Another goal of this paper was to upscale the image from a very low resolution to high resolution to recover helpful information to improve the accuracy of number plate detection and recognition. We have used Enhanced- Super-Resolution with Generative Adversarial Network (SRGAN). We modified native Dense Blocks of the Generative Adversarial Network with a Residual in Residual Dense Block model. In addition to Convolutional Neural Networks for thresholding. We also used a Rectified Linear Unit (ReLU) activation layer. The plate image is then used for segmentation using the OCR model for detection and recognizing the characters in the number plates. The Optical character recognition (OCR) model reaches an average accuracy of 84% for high resolution, whereas the accuracy is 4% - 7% for low resolution. The model’s accuracy increases with the resolution enhancement of the plate images. ESRGAN provides better enhancement of low-resolution images than SRGAN and Pro-SRGAN, which the OCR model validates. The accuracy significantly increased digit/alphabet detection in the number plate than the original low-resolution image when converted to a high-resolution image using ESRGAN.
- Palavra-chave:
- Structural similarity of images, Number plate detection, Residual dense block, Super-resolution, Deep learning, and Optical character recognition
- Sujeito:
- Artificial Intelligence and Data Science
- O Criador:
- Roy, Sudipta, Ganguly, Debayan , Pal, Debojyoti , Chatterjee, Kingshuk , and Kabiraj, Anwesh
- Contribuinte:
- Jio Institute, CVMIComputer Vision in Medical Imaging Project
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Editor:
- Springer Nature
- Localização:
- Switzerland
- Língua:
- English
- Data carregada:
- 11-02-2023
- Data modificada:
- 16-02-2023
- Data Criada:
- 01-09-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identificador:
- 10.1007/s11042-022-14018-0
-
- Descrição:
- Purpose For radiologists, identifying and assessing thelung nodules of cancerous form from CT scans is a difficult and laborious task. As a result, early lung growing prediction is required for the investigation technique, and hence it increases the chances of a successful treatment. To ease this problem, computer-aided diagnostic (CAD) solutions have been deployed. The main purpose of the work is to detect the nodules are malignant or not and to provide the results with better accuracy. Methods A neural network model that incorporates a feedback loop is the recurrent neural network. Evolutionary algorithms such as the Grey Wolf Optimization Algorithm and Recurrent Neural Network (RNN) Techniques are investigated utilising the Matlab Tool in this work. Statistical attributes are also produced and compared with other RNN with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)combinations for study. Results The proposed method produced very high accuracy, sensitivity, specificity, and precision and compared with other state of art methods. Because of its simplicity and possible global search capabilities, evolutionary algorithms have shown tremendous promise in the area of feature selection in the latest years. Conclusion The proposed techniques have demonstrated outstanding outcomes in various disciplines, outperforming classical methods. Early detection of lung nodules will aid in determining whether the nodules will become malignant or not.
- Palavra-chave:
- Optimization, Lung Cancer, Recurrent Neural Network, and CT images
- Sujeito:
- Data Science and Artificial Intelligence
- O Criador:
- Roy, Sudipta, Gunjan, Vinit Kumar , Shaik, Fahimudin, and Singh, Ninni
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Editor:
- Springer Nature
- Localização:
- Cham and Switzerland
- Língua:
- English
- Data carregada:
- 10-02-2023
- Data modificada:
- 16-02-2023
- Data Criada:
- 01-11-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identificador:
- 10.1007/s12553-022-00700-8