Search Constraints
Filtering by:
Location
United States
Remove constraint Location: United States
Collection
Jio Institute Research Publication Archive
Remove constraint Collection: Jio Institute Research Publication Archive
1 - 4 of 4
Number of results to display per page
Search Results
-
- Description:
- Multiscale experiments in heterogeneous materials and the knowledge of their physics under shock compression are limited. This study examines the multiscale shock response of particulate composites comprised of soda-lime glass particles in a PMMA matrix using full-field high speed digital image correlation (DIC) for the first time. Normal plate impact experiments, and complementary numerical simulations, are conducted at stresses ranging from to elucidate the mesoscale mechanisms responsible for the distinct shock structure observed in particulate composites. The particle velocity from the macroscopic measurement at continuum scale shows a relatively smooth velocity profile, with shock thickness decreasing with an increase in shock stress, and the composite exhibits strain rate scaling as the second power of the shock stress. In contrast, the mesoscopic response was highly heterogeneous, which led to a rough shock front and the formation of a train of weak shocks traveling at different velocities. Additionally, the normal shock was seen to diffuse the momentum in the transverse direction, affecting the shock rise and the rounding-off observed at the continuum scale measurements. The numerical simulations indicate that the reflections at the interfaces, wave scattering, and interference of these reflected waves are the primary mechanisms for the observed rough shock fronts.
- Keyword:
- Shock structure, Shock compression, Composite, Plate impact, Digital image correlation, and Meso-scale
- Subject:
- Engineering and Applied Science
- Creator:
- Lawlor, Barry , Ravindran, Suraj , Gandhi, Vatsa , and Ravichandran, Guruswami
- Contributor:
- Jio Institute
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- Elsevier
- Location:
- United States
- Language:
- English
- Date Uploaded:
- 21-03-2023
- Date Modified:
- 21-03-2023
- Date Created:
- 01-02-2023
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.1016/j.jmps.2023.105239
-
- Description:
- The evolution of information and knowledge has affected all organizations, including Libraries. Knowledge management is predominant in the fields of business management information systems, Management library, and information science. This study aims to identify and gather literature on the concepts of knowledge management (KM) related to libraries.
- Keyword:
- Library, Bibliometric Study, and Knowledge management
- Subject:
- Library and Information Science
- Creator:
- Peter, Manuelraj, Pandiyarajan, Anand, Ali, Mohammed Barkath, and Idhris, Mohamed
- Contributor:
- Jio Institute Digital Library
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- University of Nebraska -Lincoln
- Location:
- United States
- Language:
- English
- Date Uploaded:
- 11-02-2023
- Date Modified:
- 16-02-2023
- Date Created:
- 01-10-2021
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
-
- Description:
- Automatic identity verification is one of the most critical and research-demanding areas. One of the most effective and reliable identity verification methods is using unique human biological characteristics and biometrics. Among all types of biometrics, palm print is recognized as one of the most accurate and reliable identity verification methods. However, this biometrics domain also has several critical challenges: image rotation, image displacement, change in image scaling, presence of noise in the image due to devices, region of interest (ROI) detection, or user error. For this purpose, a new method of identity verification based on median robust extended local binary pattern (MRELBP) is introduced in this study. In this system, after normalizing the images and extracting the ROI from the microscopic input image, the images enter the feature extraction step with the MRELBP algorithm. Next, these features are reduced by the dimensionality reduction step, and finally, feature vectors are classified using the k-nearest neighbor classifier. The microscopic images used in this study were selected from IITD and CASIA data sets, and the identity verification rate for these two data sets without challenge was 97.2% and 96.6%, respectively. In addition, computed detection rates have been broadly stable against changes such as salt-and-pepper noise up to 0.16, rotation up to 5, displacement up to 6 pixels, and scale change up to 94%.
- Keyword:
- Binary pattern, Security, Legal identity for all, and Local Descriptors
- Subject:
- Artificial Intelligence and Data Science
- Creator:
- Rehman, Amjad, Saba, Tanzila, Roy, Sudipta, Harouni, Majid, Karchegani, Negar Haghani Solati, and Bahaj, Saeed Ali
- Contributor:
- Artificial Intelligence and Data Analytics Research Lab (AIDA) CCIS Prince Sultan University, Riyadh, Saudi Arabia.
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- Wiley
- Location:
- United States
- Language:
- English
- Date Uploaded:
- 11-02-2023
- Date Modified:
- 16-02-2023
- Date Created:
- 01-04-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.1002/jemt.23989
-
- Description:
- Skin Cancer is one of the most widespread forms of cancer in the world which can be detected using dermatoscopic images. In this paper, a texture based feature extraction algorithm is presented for the classification of dermatoscopic images. A median based Local Ternary Pattern is extracted followed by the computation of local quantized ternary patterns. The feature set extracted is then classified using a modified convolutional neural network. The images used for the detection of multiple types of skin cancer are obtained from two publicly available datasets, HAM10000 and ISICUDA11. For the proposed technique, the average recall value, average precision and average accuracy is found to be 75.20%, 95.44% and 96% respectively. An average increase in accuracy for the proposed algorithm is up-to 50.6%, 24.1% and 4.7% over LTP, DLTerQEP and a DE ANN based algorithm respectively.
- Keyword:
- Medical imaging, Image classification, Image retrieval, and Texture detection
- Subject:
- Medical Imaging, Data Science, Radiodiagnosis, Computer Science, Artificial Intelligence, and Radiology
- Creator:
- Sudipta Roy , Varun Srivastava, and Deepika Kumar
- Contributor:
- Artificial Intelligence and Data Science, Jio Institute, Navi Mumbai, India
- Owner:
- n.sakthivel@jioinstitute.edu.in
- Publisher:
- Elsevier
- Location:
- United States
- Language:
- English
- Date Uploaded:
- 07-02-2023
- Date Modified:
- 16-02-2023
- Date Created:
- 01-09-2022
- Rights Statement Tesim:
- In Copyright
- License Tesim:
- All rights reserved
- Resource Type:
- Article
- Identifier:
- 10.1016/j.compeleceng.2022.108259